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PREFACEI
This project report is based on five lectures given by

I Dr. I. N. Sneddon at North Carolina State College in March, 1963.

The results of the research reported here have been successfully

applied to the solution of certain crack problems in the mathe-

matical theory of elasticity; some of these applications will

appear in a subsequent project report and also are expected to

appear in appropriate journals.

Copies of this report are being distributed as directed;

this project is sponsored by AFOSR, ARO, and ONR through the

Joint Services Advisory Group. The contract is currently

I AF 49(638)-1159.

John W. Cell
Project Director
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DUAL S IES RELATIOIxS

l Introduction,

The present report is based on a series of five lectures given in the Mathematics

Department of North Carolina State College in March 1963. The aim of theses lectures was

to present a connected account of some recent researches on dual -eries relations, in par-

ticular of some work done in the University of Glasgow by the author and Dr. R. P. Srivasta.

The name dual inte:gral ations seems to have originated with E, Co Titchmarsh who

applied it to a pair of equations of the type

w (") Y x,) f (x) G -' x i- (1.1)

K(x, d (x) x 1 (1.2)

in which the weight function w( ), the kernel K(r,x) and the free terms f(x), g(x) are

all prescribed and the object is to determine the unknown function '(() A survey of

methods of solution of equations of this type was given recently (Sneddon, 1962).

In this report we are concerned with the series analogue of these equations, i.e. with

the problem of determining a sequence of constants fa i satisfying the dual relations

a n((n ) K(x, X) f(x), 0 cx c (1.3)

V' a K(x, X g(x), c< x i (1.4)n n
where the weight function w(Xn), the kernel K(x, Xn) and the free terms f(x), g(x) aren n
all prescribed and %n.' is the sequence of positive zeros of a given transcendental

function j(%). Relations of this type seem to have been discussed first by Cooke and

Tranter (1959) who discussed the case in which w(Xn) = XnP , K(x, x n JV (xnX),
j(X) =~ .I(~

The two tyopes of dual relation can be described within one framework . Suppose that

the problem is that of determining a function defined on a set I and that

Li (x, ) 4(O;) = fi(x), x . J1 (1.5)

12 (x, 0 (*) = f2(x), x J2 (1.6)

where the linear operators L1 and L2 are defineu on J x I where J = J J2' An

analysis of this general problem has recently been given by W. E Williams (1963) but we

shall not discuss it here. Our concern is with the solution of dual relations of the type

(1.3), (14) for special values of the weight function and the kernel.

!0
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The work described in this report arose out of the analysis of certain physical

problems so we begin in (.j 2) by reviewing some of the situations in which dual series

relations occur in the analysis of mixed boundary value problems in mathematical physics.

The solution of these dual series relations involves complicated mathematical analysis.

With a view to shortening the proofs by separating out some frequently occurring pieces

of formal calculation we separate out (in f3) some of the basic mathematical techniques.
Inf §4, 5 we consider the various kinds of dual series relations in which the kernel

K(x, X n) is a Bessel function of the first kind. The relations are essentially of two

types; in the first (!94) the function j(%) is the Bessel function J >(X) and the series

involved are therefore Fourier-Bessel series, while in the second (@ 5) the function j(x)

is the linear combination %J (%) + HJ (%) and the series involved are Dini series. In

§6,7 we discuss dual relations involving trigonometrical series which are of use in

the solution of certain two-dimensional boundary value problems. In the next section

(8 S) we discuss a class of dual series relations involving series of associated Legendre

functions, using the method of Collins (1961). Series relations of this kind which arise

in the analysis of problems relating to spherical caps form a particular case of the

problem of solving certain dual series relations involving series of Jacobi polynomials.

We conclude our treatment by outlining (in48) Srivastav's method of solving equations of

this type.

I
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T...e O u.... of Dual Series Re.ations iU1 MtiwmtAl .

We begin by considering some of the circumstances in which dual series relations

arise in the analysis of boundary value problems in mathematical physics.

20. Electrified Disk in a Grounded Cylinder.

Suppose that an electrified disk is situated

in a plane normal to the axis of an infinite

circular cylinder its centre lying on that axis.

The cylinder is assumed to be grounded, and the

potential of the disk is prescribed. We take

the origin of coordinates at the centre of the disk

and the z-axis along the axis of the cylinder. For X

convenience we can take the unit of length in our problem

to be the radius of the disk; we may then take the

I radius of the cylinder to be a > 1. The problem is to

find the potential V of the electrostatic field in the Li- 1

interior of the cylinder. If we introduce cylindrical

coordinates (p, 0 , z) then V( p , 0 , z) must be a solution of Laplace's equation

a i a v a 2 (2.1)

ap pap p 2a 2 z

where V(p, , -)---0 as Iz1 -I --- and

V(p, ,o) _f(p,4 ), 0 .Cp I,

and V(a, ,z) =0, I1 4> 0. (2.2)

Using the superposition principle we see that if we can solve the boundary value

1in which

V( P a) = (p) cos(V + a,), 0 .- p<, (2-3)

we can solve the boundary value problem in which V( p , , O) = f( p , 0 )

Instead of solving the Dirichlet problem for the space between the disk and the

circular cylinder we can reduce the problem to a mixed boundary value problem for the

semi-infinite cylinder z i O, 0 < p < a when the boundary conditions (2.2), (2.3) are

supplemented by the condition

avaz o, -=0, i<p a . (2.4.)

The function

-%
v( p , q, z) = Cos(,, + a.,) n,. hJ, )( . ' (2.5)

n-i



satisfies the harmonic equation (2.1); it satisfies the condition V -- b 0 as z -30-

and the boundary condition (2.2) provided that X , 2, x are chosen to be the

positive roots of the transcendental equation

J V (%a) = 0. (2.6)

To satisfy the boundary conditions (2.3)0 (2.4) we must choose the constants a 1 , a 2 ,

a, ... to satisfy the relations

X-1 a J (x p) = f (p), O p<1 (2.7)

fl=j

Z anJ(X n p ) = 0, 1 < P < a. (2.8)

n=

In particular if the prescribed potential of the disk is symmetrical about the

z-ax:s, i.e. if V(p, t, O) =f(p),forO- p < 1, wemay take Y =0in these

equations to obtain the pair of equations

Z X7 aaJ(). P) f(p), 0 < p < 1 (2.9)

TZanJ o(x p) = 0, 1 < p 4 a, (2.10o)

I n=i

where now the I are the positive zeros of the function J ' (Xa),
Pairs of equations of the type (2.7), (2.8) or the type (2.9), (2.10) in which

the sequence of constants I an] is determined by a pair of equations, one of which

is valid in one segment of the positive real axis and the other of which is valid over

another segment, are called dual seriea eauations.

2.2. The Reissner-Sagoci Problem for a Semi-Infinite Cylinder.

The standard Reissner-Sagoci problem is that of determining the components of

stress and displacement in the interior of the semi-infinite elastic solid z W 0 when

a circular area of the boundary surface z = 0 is forced to rotate through an angle a

about an axis which is normal to the undeformed plane surface of the solid; it is

assumed that the part of the boundary surface which lies outside this circle is free

from stress. (Cf. Sneddon, 1951, p.500). Recently Sneddon and Srivastav (1 963)

have generalized this problem to the case in which the semi-infinite elastic body has

I
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a cylindrical boundary whose cross section is a circle of radius a.

j It has been shown by Reissner (1937) that in this case the only non-vanishing

component u,, where we use cylindrical coordinates (p , 0 , z); all the components

of the stress tensor vanish except a zq and apo which are related to u through

the equations

where 1j denotes the rigidity modulus. To satisfy the equation of equilibrium

ap + az +p 0

we must choose a form for u satisfying the equation

a 2 U0 i auo uo a2uO
2u 1 _ 0. (2.12)

ap 2  p ap p2 
2 Z

The boundary conditions of the problem are simplified if ve choose the radius of

the prescribed circle to which the rotation is applied to be our unit of length, On

the plane boundary z = 0 we then have the boundary conditions

U = f(p), 0 p< I; azo = 0, 1 < p < a, (2.13)

where the function f(p) is prescribed. In the case

of most immediate physical interest f(p) = a p ,

where a is a constant, but it is of value to derive

0, the solution in the general case.

In the first instance we assume that the

cylindrical wall of the cylinder is rigidly clamped;

i.e. we assume that

u 0 'P = a, z > 0. (2. 1)

We also assume that u, a zc7p0 all tend to zero

as z ---.o (of. Fig. 2).
If we observe that

a p 2 Pp p 2 ;a Z2 ap a p

i i owe see that
Fig. 2 u = (2.15)

is a solution of equation (2.12) provided that
is a harmonic function. In this case the expressions for the non-vanishing compon_



i6

ents of the stress tensor assume the forms

If we =i(2e CO

O(p ,Z) X= a e j(, p) (2.17)

n=l

in equations (2.15) and. (2 16), where X, , ... , X , ... are the positive zeros of
i x a) , th e. n- 00_x,

u O( a) at •n j(X p), (2.18)

,9--x

n. =i (,)

so that equation (2.14) is satisfied and ':he mixed boundary oonditions (2.13) will be

satisfied if we choose the constants a to satisfy the dual series equations

IL ? a J,(x ) =f(p), 0 .-P < 1, (2.20)

5=1

a J (Wp) = 0, 1 <p < a, (2.21)

where, it will be remembered, the i are the positive zeros of J (ka).

If, instead of the boundary c-dition (2.14), we assume that the cylindrical

boundary is stress-free, i.e. if we assume that

jO= 0 a = o, p = a, z > O, (2.22)

it is necessary to consider, not a semi-infinite

Z = cylinder, but a very long one of length 8 >> a.

We assume that the base of this cylinder has zero

displacement, i.e. that

U 8, 0 <p < a . (2.23)

/ , / - / The conditions (2.13), (2.22), (2.23) can be realized

by considering the distortion of a cylinder which is

rigidly attached to a fixed rigid foundation z = 6

and is deformed by the application of a torque to a
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circular patch of its other plane surface (e.g. through the rotation of a rigid disk

attached to it) while the remainder of its surface is free from stress (Cf. Fig. 3):,

If we assume the form

u aop( Z) + I a sinhX ( Z (xP) (2.24)

n=1

-or the displacement, then we see from equations (2.11) that the stress components

are giver by the equations

= - P aO coshX (Z) j(X P), (2.25)Z a n sirh X I n

n=1

r0, = - a siX8 - Z) ( (2.26)

nl=i

It follows immediately from these equations that the boundary condition (2.23) is

satisfied and that the boundary condition (2.22) vill be satisfied provided the X 's
n

are the positive zeros of J2 (Xa). Also, since on z = 0,

u -a p 8 + anJ (x P)

n=I

a o = -'a° 0 P - c a ooth(Xo5) JI (Xnp)

n=i

it follows that the boundary conditions (2.13) will be satisfied if the coefficients

a satisfy the dual series relations

aoP8 + E X-', an JI(xnP) = f(p), 0 -< p < 1 (2.27)

aoP + E an coth(xn8) J,(xnP ) = 0, 1 <p < a.

n=1

The last pair of equations is the pair appropriate to the deformation of a

cylinder of finite length 8 . If we are considering a very long cylinder (8 >> a)

then we may replace the factors coth(xn8) occurring in the series on the left-hand

side of equation (2.28) by unity. For a long cylinder the problem is therefore re-

duced to the solution of the dual series relations

I



8

aoP8 + %," a n (K np) = fJ) p), 0 4( p< 1, (2.29)

is + a,,, J o, 0 < p < a, (2.30)0 1

where 8 sa known constant and the X ' s are the positive zeros of J -Ka).

2.3. Problems in the Condntion of Heat.

Similar equations arise in problems concerned with the conduction of heat in

cylinders. If 6 (p , 0 , z) is the deviation of the temperature at a point ith

1 cylindrical coordinates ( p, 0 , z) from a standard temperature 00 then it is well-

known that in the steady state 0 must be a harmonic function in the region considered,1 so that a solution appropriate to the semi-infinite cylinder 0 ; p < a, z 0 0, in

which there is an axlaymmetric flow -heat is

I " - I -x
9(p, Z)= aJ(Pxn)e n (2.31)1 IR= I

From this equation it follows that the rate of flow of heat per unit area across the

plane z = 0 out of the solid is

k =-k a J (px ), (2.32)

where k is the conductivity, while that across the cylindrical surface p = a out of

the solid is

k ; -k a e n J ( ,) (2.33)
P a

I n=

The constants X n are, as yet, unspecified. Their values will be determined by

J the boundary conditions on the surface p = a. There are three important cases to

be considered.

(i) In the first case we assume that the temperature of the surface p = a is
maintained at the constant value 0. so that O(a, z) = 0. From equation (2.31) it

follows that in this case the X ' are chosen to be the positive zeros of J (%a).
n 0

If the plane surface z = 0 is heated in such a way that the temperature is

prescribed over the circle 0 4 p < I and the rminder of the surface is insulated then

4
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we obtain the pair of dual integral equations

%-,i a J (Px f (p) 0 p< 1 (2.34)

n=1

SJo(p X)= o, 1 < p < a, (2.55)

where the function f(p) is prescribed.

On the other hand if the surface is heated in such a way that there is a

prescribed flux of heat into the circle 0 < p < I and the remainder of the surface

is maintained at the standard temperature 6 0 , then the a must satisfy the

I equations

1 n J(Pxn) = g(P), 0 <p <1 (2.36)

n=1

) a J (PX) = , 1 < p < a, (2.37)

n=i

where the function g(p) is prescribed.

Equations of a more complicated type arise if we have radiation from the surface

S z = 0 into a medium mintained at a constant temperature 60
By Newton's law of cooling we then have that on z = 0

(k U) =Ho(p o)

where H is a constant. From equations (2.31) and (2.32) we then find that

S(H - k ) - k a(1 + hX- 1 )Jo(p)

I 1n=o

where h = ;/k.

Hence if the temperature is prescribed over the circle 0 < p < I of the surface

z = 0 and over the rest of the surface there is radiation into a medium maintained at

temperature 0o . the constants a n occurring in the solution (2.31) must satisfy the

dual series equations

I n Z n anJ0 (.np) = f(p), 0 <P < 1, (2.38)
n-i
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a a, - h,71 )J (p) O, 1 < a. (.139)
n

On the other hand if the heat flux is prescribed over the circle z = 03 0 p < I and
we have the radiation condition over the zone i < p < a, we see that the equations

1 determining the coefficients an are

i a n jox (0, p = g(p), o, ", < . (2 .o))
n1= 1

(I + hX)') a Jo(Xp) o, i p € a., (P.4-,)

I (ii) In the second case we assume that the cylindrical surface p = a is

insulated against the flow of heat, From equation (2.33) it follows that the \ n

in this case are the positive zeros of J (Xa). We again get boundary value problems
of the types considered in 0i). The dual series relations are exactly the same a.6

i those listed above except that the Xn are now the positive zeros of J (?a).
(iii) Finally if there is radiation from the cylindrical surface into a medium

I maintained at the fixed temperature 4 we have, as a consequence of Newton's law of
cooling, the equation

(o +k 0. (2.+2)
oap

I Substituting from equations (2,31) and (2,33) we find that

- - k X,1 ao[hJ(Xa) +XV (W, a e n

n1=,

from -which it follows that the conditions (2.42) is satisfied if we choose the X
occurring in the solution (2.31) to be the positive roots of the transcendentalI equation

hJ (?a) + XJ(Xa) = 0,, 
(2.43)

0 0

I Dual series involving trigonometric series arise in the solution of problems
concerning the conduction of heat in the long strip 0 < x < V, 0 - y < 6. If we
suppose that the temperature deviation O (x, y) is prescribed over the segment
0 < x < c, y = 0 and that the remainder of the boundary of the strip is insulated
against the flow of heat across it then it is readily shown that the solution of the

problem will be

II



1 
11

( , ) = ( -) +n acosh n(6 - (0

cosh n8 ( x (271(4)

n=1

I ~provided that we Canl deteme a euence off constants [ani] to satisfy theda

series relations

~a8 + ~ n- Ia cos(nIX) = f() x < 0., (2.45)0 1 n
n=

a o  + 0 a tanh(n6) cosknx) = O , c < x <9 , (2.46)I 0 1 n

where the function f(x) is prescribed. If 6 >>v we can replace tanh(n) on he1 left-hand side of equation by unity to obtain the dual series relations

a 8 + 7 nla cos(nx) = f(x), 0 < x < co (2.47)

n=li

+ an cos(rx) = 0, c < (2.4)
i n= l

On the other hand if the conditions on the sides x = 0, x = v are replaced by

the conditions 0 (0, y) =e ( , y) = 0 the solution appropriate to the semi-infinite

strip 0 x < 7r .YA 0 is

6(x, y) = n- a nsin(n)e"-f (2.49)

n=j
where the constants [ a n] Satisfy the dual series equations

Jn- a nsin(nx) = f(x), 0 4 x <0 (2.50)

n-i
fla n sin(nx) =(O 0 <X4o, (2.51)

I °

I
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1 2.4. Some Boundary Value Problems for a Soherical Cap.

Dual series relations involving Fourier-Legendre series arise in the analysis

of some electrostatic and hydrodynamic boundary value problems for a spherical cap.

The first problem we consider is that of determining the electrostatic

potential u due to a thin spherical cap maintained at a prescribed potential. If we

use spherical polar coordinates (r, 6 , 0.) referred to the centre of the sphere as

origin and the axis of symmetry of the cap as polar axis (Oz in Fig. 4.), we can

describe the cap by the equations r = a,
0 < e < a . On the assumption that the

- , -prescrilbed potential is symmetrical about the axis

of the cap, i.e. that u = f(O) on the spherical

cap, me may take u to be an axisymmetric solution

y of Laplace's equation

2au 2 au I____2___3- sine u 0
- +- =02

Fig - 8r' rar sine a

satisfying the conditions

(A) u = f(O) on r = a, 0 < < a ; and u is continuous across r = a;

I (ii) aq/aris continuous across the spherical region r = a, a < 0 <

(Ii) u = 0(r " ') for large r.

A solution of Laplace's equation satisfying the continuity condition on u across

r = a and the condition (iii) is

I a n [rn Pn(O 0) O<r A. a

a ) n P(cose), a

u~r =,IL
T ~ n aI n=o

where to satisfy the conditions (J3 and (i) the constants a nmust be chosen to be

1 solutions of the dual series relations

I Zna Pn(cos o) = f(a), (0 < 0 < a ), (2-52)
n-o

I(2n 1) a P(Cos e) 0, (a < e 4 2 r) (2.53)

Iu



j A similar boundary value problem involves the determination of the velocity

potential 0 due to the motion of a spherical cap along the direction of its axis -,ith

1 constant velocity U in a perfect fluid at rest at large distances from the cap. If

we use the above coordinate mytem then * = # (r,e ) must be an axisymmetri-al

solution of Laplace's equation such that, for large values of r, I = 0(r-' ) and

r a §/ r is contiuous a the sphere r = a; further it must satisfy the

condition ra = - U a co 0, r a, 00 : a (2.54)

while on the spherical region r = a, a 4 a 4 w , m ut be continuous (Lamb, 1953,

p.160). An akm tric solution whioh is O(r ") for large r and has r a i/a r

1 continuous su r = a is givesn by the equations

- + ). P (c o), (r >a ).

r n

I The condition (2.51) and the continuity of # scros r = a, a w are satisfied

if the constants a satisfy the dml series equations

! Zn(n + 1)a P(ca 0) = - Us ON, 0 0 < a, (2.55)

.(2n, .. ). n.(Oo ) = o, a < 0 ". (2o56)

I On the other hand if s0 upUpos. that the Cap moves through the fluid in the direction

I = 0 perpendicular to its axia of symmetry with uniform velocity U. The velocity

potential 0 (r, 09, 0) for the motion must satisfy Laplace's equation

Or + r sin+ 29 sin ' rhSine n) * I ai =)
be such that = O(r-) for larger. 0 anda #/8r are continuous over the surface

Sr=a a 2w ile

IrU -Uainecam# (2.57)
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It is easily shown that

I(n 2) a n T t (cos6)cos$ , O r< an r) n+1

I - (n -r 1)a (a,)n" T-1 (coo 0)Cos, r > a

n=o

where the coefficients a satisfy the dual series relations
n

(n+1)n+2)a T 1  (cos) =-Ua sin8, 0 0< 0 <

1 11=1

(2n + 3)a. T " (cosO) = o, a <0< .I f~

I

.3 • Mathematical Preliminaries.

The solution of the various types of dual series relations which we have derived

in @2 is not a simple matter. The analysis is complicated even in the simplest case

axnd it is preferable to shorten the proofs by separating out various bits of formal

analysis. This is what we shall do in this section. We begin by listing some

properties of operators of fractional integration.

3.1. The Erdelvi-Kober Operators.

We shall make use of the Erdelyi-Kober operators I as modified by Sneddon

(1962). If n anda are real, a a 0 and 7 > - -we define the operator I,

by the equation

I fu) x 2 -2a - 277 u 2 1 +1 (X 2 _ u 2)a f (u) du (3.1)1 ]a r (a)- 1

while if a < 0 and n is the least positive integer such that a + n 1 0 we define
I t by the equation

i ,f(u); x = -217 - 2 a -I n x2n + 2a + 277+1 1(u) , x (3.2)I a f 77 ,an r+ n(

where denotes the operator defined by the equationI S
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We shall in fact only encounter the case in which -- < a < 0 when equation (3.2)

reduces to the simple form

r , -277-2a -i
WIX f2 aU 1 ) .ud (3.4)i u XJ =1 r(7 (x -u)au 2 7 X] f(u)du .)

A much used property of these operators is that

1 7a ICU.219f (u) ; x I = CXI 17 + , alf(u); 9](.1

We shall also require the fact that I has an inverse defined by the equation

-I = (3.6)
7 4a 77 + a a

and the property

SI I (3.7)
7 , d n +a, 7 , a +p8

We also note that I is the identity operator.

When the function to which the operator , a is applied is a function of more

than one variable we shall modify the notation of (3.1). For example we shall use

l7,aIf(u , t); u-3x to mean

.2 2-2 2 u _ ( u)a-I f (u, t) a.r () , o

It considerably simplifies the writing down of our results if we define a

functionK v a Y (p, t; a) to be the integral

J7 I(ay) I (P y) Ip(ty) y +Yy

(when the integral converges). When it is clear from the context what V and. a are we

shall write K (p, t) for K ( p, t; a). The integral will satisfy the

correct convergence conditions 'at infinity' if 2a > P + t; since, in our

applications p < a, t < a this condition is automatically satisfied. To ensure

convergence at the lower limit of integration we must have -2 v + a + p + I +y > -',

i.e. we musthave v < I +-L( a + P + y).

The following relations satisfied by K (P, t) can easily be deduced from

the recurrence relations satisfied by modified Bessel functions of the first kind
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(Watson, (1944), P.79) and integrals given 
by formulae (6), (7) on p.365 of

l Vol.II of Erdelyi (1954):

a a y a- 1, , yt pa ( p ,t), (3.8)

]Ka, ,Y ( I t -Ka. Y + i (p, t), (3.9)

p[Ka , y(, t); x] = 2 " x- K x. t), (3.10)

a + y -pIt) 310

I II pK (P t); t-*- xl= 2 uy.(Xp t). (3.11)
'U# 1 ,K a. Y+ ,_ x I) a.3.11)-

We shall also have occasion to consider the function defined byI
K. 1 1p~y.y (u, v) = -- (y)

a yI'(y) + HI (y)V V

(0 < u < 1, 0 < v < 1) whenever the integral converges. Using the recurrence re-lations satisfied by modified Bessel functions of the first kind, and the results in

I Erdelyi (1954.) quoted above we find that

la
,fupK Hpy (uv= K H, ,, 8 +1(u v)p (3.13)

a 6 .u. .)- V. + (u, v), (3.11)

I8p, a vHp y, (u, v); u ] 2axa K a+py 8 _(x,v) (3.15)

I . ,[KIH" PI, 1(u, v); v-j 2 Y-K! HIP y+a. u, Y) (3.16)

3.2. Infinite Series involvn .. Bessel unctions.

In the subsequent analysis we shall encounter functions of the type S

(p, t; a) defined as the sum of the infinite series

2 c JaPXn) "(txn)Sy(p, t; a) = - - ( k) t(317)

whenever the infinite series converges.* The infinite sequence ?nIifomdfth

I L'" isa T ( ) " " formd.o th
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positive zeros of the function J + I (aX). In equation (3.17), P and t are real

variables. satisfying the inequalities 0 < p, t < I < a and-(a P + 2) < Y - 0.

Series of this type are considered in Sneddon and Srivastav (i 963) but special

l cases were considered earlier by Tranter (1959). Tranter defines two functions by

the series

s (vm, kc, p) = +2m + k(x) , > -1 (3.18)
S 1) - (3.19)8=l s V + I

i V 2m+ (X a) JV 2r k (-x )

a (v i, n, k) Y x k, +k (a'k m -n-k (3.19)
1 s=1 a: V + I

I where m and n are zero or positive integers, k > 0, and a > - 1. It is easily seen

that, in the notation of equation (3.17),

a s1(, ,M k, p) I a2 s, +, 2 + k,_k (p, 1; a), (3.i8a)

|an d ak F S( a . 3 1 as2(Y., MR n, 2 Y. , v + ?-+k, Y + 2n + k, -2( ,  ). 3.9

We shall also find that we have to deal with series of the type

S, (u. (3.20)sH, p , 'r 2 J( uX )J ( -
2. 16 L .

0 <u <1 0< v< , her, nw, 1 is the infi.n~te sequence formed by the

positive roots of the transcendenta equation

-&J"'(x) + nJv (-) = o, (3.21)

H and Y being real constants, v )- . Series of this type have been discussed by

Srivastav (1963a).

To obtain an integral representation of the series on the right-hand side of

equation (3.17) we consider the contour integral

fJF(z)dz

where the function i(z) is defined by the equation

I
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J1,Z) (a z) + i Y , (a z) z (t)3.2
J J1 (a' Z) JapJ pt)(.2

and the contour C consists of:-

) the portions of the positive real

axis joining the points

8,K I - 81 ;%s +8so Xs+1  - 8s+1

(s = I,2, ...,p -1);x p +8P, R; where

the 8's are small and p andR are large - A

and such thatk < R <Xp1;

(ii) a series of small semi-circles Fig. 5

Y s (s = 1, 2, ... , p) with equations

Izs -x s I = as;

S(iv) the positive imaginary axis from z -Re ito z -be2i ,

() a small circular quadrant Izi I =, 0 < arg z < - .

In general the point z = 0 is a branch point of F(z). Each branch is, however, an

analytic function and therefore this presents no difficulties; we choose that branch

for which Re F(z)3l Ja(Pz)J,( t z)s1+Y for real values of z. Using .tandard

procedures in the calculus of residues we can easily show that

S ~a~p,7(p, t;a) J (px)J ( tx)xy+ idx+.2si (a+*+y-2v)] K a,,6 , p , t Ia) (3.23)

where the function K V, P, , y (p, t; a) is the integral defined above.

In a similar way we can obtain an integral representation of the series

S (U, v) in terms of the integral K PHO 8 (u. v) by considarlM

the contour integral

f (z)J(uZ)Jy(Vz)z 8+1 dz

where z J'(Z) + iY"(Z) + H J V(z) + iy(z)

2J ( ) + H J ( )

and G is the same contour as before, except that now the X 's are the positive roots of

equation (3.21). We find that

I
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S (U t V) fJ (u X) J (v X) x 6 + 1 d

+ sin 8 +P +y- - H,,y, (u, V) (3.24)
1 S V

We see that the expressions for S and S involve the Weber-Schaftheitlin integral

ox-  Ja(PX)J (tX) dX

in which p and t are supposed to be positive, and where, to ensure convergence

Re( a + +1) > Re(X)> - 1, p t,

Re(a +# +1)> Re(X)> 0, p t.

The evaluation of this integral is a long and complicated affair, for the details of

which the reader is referred to pp.398-404I of Watson (I 944). We shall merely state
the relevant results.

It has been shown by Sonine and Schaftheitlin that the integral

FO x aP -y J (j) Jy (b x)d (325)

has the value

b Y-r (a) b2 (3.2)2Y- C, -P a + Pr(r(-) 2"1 ( ay P ; y ; 7) 3.6
2Y~a +r (y) r(i~ pZ

when b < a and the value

a- 2

2 - a - b 2 a " Y + 1r(y - a )r(a - + I) F(Ca - y+1;a-#+i* ) (3.27)

of Pbry- ra +J 'b 2 327
when b > a. It will be seen from these results that the integral (3.25) is a function

of /a which is not analytic at the point 1/a = I. When b = a, the value of thef integral has to be found by a special procedure for the details of which the reader

is referred to p.4,02 of Watson (I 944).
Some particular cases are of special interest. If we put a = V + m + 1,

P = I -k- m y = v+ , a = 1, b =p , wheret mis a positive integer, andk and Y

are such that the integral converges we have the result
|V

2I(k rm(k { 1);(m+k) p < 1,

0 p > 1,



20

where

I( V Ingk p) juik J + 2 mk (u) JV (pu)du (3.28)

Using the transformation

12F a, P , y ; z) z)y - a  
2 PI (y - ay-P;y; Z)

(Sneddon, 1956, p.22) and the definition

m (a, b, X) = 2F I(- i, a +-rm; b; X)

of the Jacobi polynomial we obtain the result

I r(P + m + i) - )k- 3;.(k +, i; P2 ), 0 < p <

21c-' r (+ 1)r(m + k)

I(v, rk, p ) = (3.29)

I 0 p > 1

To return to Tranter's series s and a2 defined by equations (3.18), (3.19) we

I, note that it follows from equations (3.18a) and (3.23) that, since m is zero or a

positive integers

I s( V , m, k, p) = T( , m, kp) (3.30)

where I( v, m, k, p) is defined by equation (3.28) and can be evaluated by means of the
j formulae (3.29). In a similar way it follows from equations (3.19a), (3.23) that

a 2 (V, M. n, k) a.+ 2m (x)J1 ()dx

7 V, Y+2m+ , +2n+ k-3.31)

Another special case of equation (3.23) which is of interest is

2 sin( -Zp)K , ( p, t; a)

which, as a result of equation (3.29), can be written in terms of Heaviside's unit

function in the form

I
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j~~ I ~ pt; a)I 1p
|21 - P t Li- P(p2 - tz) P -12

2(p - t) - -sin(p7ir)K V I _1, 4p(p, t; a). (3.32)

r ("p)p 1

In a similar way we can show that

, + I 1 Y-p,-p- I (p ' t; a)

I 24 t v 
- t2 

- t2 H(p t) -2sCo( p )K +(pt;a). (3.33)

I r(i + p)p I + 2 V -t2j

Further results can be obtained by means of the Hankel inversion theoremy If

we apply this theorem to equations (3.28) and (3.29) we can deduce that

p V+1( 1  (k+V, V + 1,p 2 )J(pu)dp = r( P m + ) J (u)
0 M V -v +-1 2 + k

which, by a trivial change of variable, we can write in the form

1x (a- xak lM(k + V x + 1, xs)J(X)dXI =°
I2k'-r v + 1 )r (m + k) v + k F.-kJ g)(34

= r( v + m + i ) J 2m + k( )" 33)

If m = 0 the Jacobi polynomial reduces to unity and we obtain the simpler relation

V 4 P+1(2 _ 2)kl jP(z)dx = 2k-1 r(k)s v+k -kj (). (335)

We also require to obtain integral representations of two trigonometrical serzes

involving Bessel functions.

By integrating the function

cosec( gz)e zJ ( )sin(=),

round the contour r which consists of the positive real axis, the positive imaginary

axis and the arc1 in the first quadrantI of the circle I zj = R, with large R, and

with indentations around the points z = O is 2p .... n. ... we can easily show that

I
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J 0 (nu)sin(nx) = J,(tu)sin(tx)dt - sinh(ry) (uy)inh(xy)dy

n=Also it is well-known (Watson, 1944, p.405) that

SJo(tu)sin(xt)dt = ( x 2  U2)- H(x - u)

where H(x) is Heaviside's unit function. Hence we have relation

I J (nu)sin(nx)= .H(x u 0 sinh xy) e-VY I(uy)dy (3.36)
n(x - u2) sinh(7y)

n=i

I Similarly, by integrating the function

cosec( z)eif z J (uz)cos(xz)1
round the same contour r we can show that

(nu)cos(nx) =fC J (tu)cos(xt)dt -I 00 cos r E (uy)dy
fosinh (Iry)e (u)

I 8=

from which it follows that

I J(nu)cos(nx) _- x ( u Go cooh ) e- c I (uy). (3.37)

L i U I(X 2 _ U2 ) o sinh( rY)
fl=i

3.3. Some Intezral Equations.

In solving dual series relations we sometimes have to solve an integral equation

of the type

fax h(t)dt =g(x), a<x<b 3.38)

f(x) - f(t

where 0 < a < I and f(t) is a strictly monotonic increasing function in (a, b). We
shall give a solution due to Srivastav (1963c).

Consider the integral

x f'(u)g(x)du

I [af{() f (u) a
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If we substitute the expression for g(u) given by equation (3.38) and interchange the

order of the integrations we find that the integral is equal to

I 1 h(t)dt t f"(u)d - f(u)}

Ia ft[f (u) f f(t)iVa [f (X) f u]

The inner integral is easily shown to have the value B(a, I - a) = r cosech wi a It

therefore follovm that the integral has the value

v cosecira j h(t)dt

and hence that the required solution is

h (t ) =sin, ra d f'(u)g(u)du (3.39)

1 dt fa f(t) - f(u) II- a

By a similar method it can be shown that the integral equation

h(t)dt a = g(x), a < x < b (3.40)

If(t) - f(x)J

where 0 < a < I and f(t) is monotonic increasing in (a, b) has solution

h1(t) -_sin v I I()AU)TI-
ir dt f f(u)- tj

Two special cases are of particular interest and we shall consider these now.

I If f(u) = -cosu, f'(u) = sinuand a =j and we find that the integral equation

S h(t)dt g(x), a xb (3.a)

l jy s(0cost- Cos X)

I has solution h(t) = I -L t  sin u gu)da

( dt- a ,/(os u - cos t) tb

I and the integral equation

b •c h(t)dt = g(x), a < x < b (3.43a)

I has solutin
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h(t) I d b sin u t(u)du < b

v- t t &(Cos t- Cosu)#t

The classic case is the one in which f(u) = u2 f () 2 u. In this irs tame we

find that the integral equation

I h(t)dt _g(x) O< a < 1 a x( b (3-a)

has solution 

(X
2

h(t) = 2 sin Val d t a (u) a< t< b. 3I ~~~~i dt a ( -u? ) - '  a<t<b 3Jb

and that the integral equation

b h(t)dt = g(x), 0 < a < I, a< x< b (3.43a)
I X (t 2 _ X2) =

has solutionh(t) 
2 sinia d fb u g(u) d 0 a< a< t< b.

9 dt it (u2 - t2)
1 -  a a' (3.5b)

3.4. Some results on Associated Legendre Polynomials.

In the discussion of dual equations involving Fourier-Legendre series of the type

(2.52), (2.53) we require certain properties of associated Legendre polynomials. We

list these now.

Ferrers' associated Legendre function of the first kind is defined by the equation

TM  (x) = (-1)m 0 - x) P (X), (-< c x < 1), ,..5)g m~f 3W4f

m and n being zero or positive integers and Pr(x) denoting the Legendre polynomial of

degree r., and by the relation

T'M  (x) = (_I)m r(n + T M  (x) (3.41)IM.n r(n + 2m + 1) m+n

(MacRobert, 19471, pp.125 and 328).

If we assume that the expansion

f(e) -n + 2m + )aT, (Coso. (348)

n-@
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is valid for 0 5. 9 < r and that it can be integrated -term by term,. then, using ztan-

dard integrals involving associated Legendre polynomials, we can easily show that the

coefficients are given by the formula

n= (- )M f(,)Tm (OS X)st x dx (3.49)

Using the results of §3.3 we can obtain an integral representation of the
associated Legendre polynomial. If we write

1Co 0 e RM (u)du

m~o 2 10 0/(cos 6-cos e ) <

then it follows from equations (3.42a and b) that

I d u sin x tanm 1 xT -m (cos x)dx
R m (u) j+n

i 7r d*u o 4(Cos x - Cos u)

The integral on the right is difficult to evaluate but it has been shown by Collins

(1961) that
R:.,(u) - ()m 2m+ (n + 1) sin m(Gu) cos(n.u )U. (3.51)

Slr(n + 2n +I) sin u cosju

When m =0,2 this gives Re (u) =R (u) whe re

Rn(u) = - oos( ). (3.52)

If we insert this expression into equation (3.50) we obtain the Mehler-Dirichiet
integral for P (cos 0). Similarly, by putting m I in equation (3.50) we find that

R1 I Cu) = -1 sec(ju) tan(ju), sin ±I + sin(n + 2)u (3-53)n+1 A/2 V n+I n +2

4. Dual Relations involving Fourier-Bessel Series.

We shall begin by considering the pair of dual series relations

Z C1 a 7 J f IIf(p)) 0 p < 1, (41)
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a J (pX) = f,(p), 1 < p - a, ()+.2)

where p and v are real constants satisfying -1 1 p < 1,' > 0, i)]are the

positive zeros of the Besse'l function J. (aX). Tefunctions [ adf (P) a.re
prescribed and the problem is to determine the sequence of constants a ThLs

-pair of equations is an immediate generalization of the pairs of equati ons (2 7),

(2.8); (2.20), (2.21).

-We split the solution of this problem into two parta by considering two special

problems the solutions to which can be combined to give the solution of the general

problem:

Problem (a): This is the special problem which occurs when f 2 (p) M 0 in

j which case the equations reduce to

X -na J (pX )zf (p), 0 -P < 1 (4-3)

00 a n J ,, ( e ,,) = 0 ,' < P,, .a . ( .)

n=

Problem (b): This is the special problem corresponding to the case in which

f (P) - 0 and the equations reduce to

Z .-PaJ,(pX)O, p 1 (4.5)n n PX
fl=j

Z aJ(pX) = f(P), 1 < p < a. (4.6)
n=I

Problem (a) was first considered by Cooke and Tranter (1959) using a method

similar to Tranter's method of solution of dual integral equations. We shall begin

with an account of this method and then give an account of an alternative method due

to Sneddon and Srivastav (I 963) in which the solution to the problem is reduced to

that of a Fredholm integral equation of the second kind.

4 . . The Cooke,-Tranter Solution of Problem (a).

We need not restrict v, to Y N 0 but we assume that v is not a negative

I



j 27

I integer and that P > - 1 +1p.

If we put k = I - "p in equations (3.30) and (3.29) we find that

J P 2 m .+ I - w p ( -X n ) J V( -&n 0 I < P 1 a* o ' ,=0 (1< p < a) (4.7)
X 1 p- )p ( Xa)

n=1 n V + n

so that if we take

an =I -p j2a)Z bm J +2m+1 (Xn(

In Y

the equation (4.4) -Ls automatically satisfied.

I The coefficients {bm3 have now to be chosen such that an as given by equation

(4.8) satisfies equation (4,3). Substituting the expression (4.8) for a into

1 equation (4.3) and interchanging the order of the summations

CO YJ  2m. 1  - -Op  0 n )  J  ( Xnp)

b m bi X I +-2P)j2 (Xna) - fl(p), (0< p < I). (49)
m=o n=1I n V +1 n

I Now, by equation (3.34), if s is zero or a positive integer

J V+2.2s+i -p (kn) 2Pr(V + i) /a p+ -) P

X 9 p r( + 1)r(s+ 1 -p)

j X e(1 -p + V + 1 p2 )JY( np) dP (4.10)

where 's is a Jacobi polynomial. Hence if we multiply equation (4.9) by

S+ ( - p 2 ) .2 I( - +p+VV +1, p 2), integrate with respect to p from 0 to

I 1, and interchange the order of integration and summation and make use of equation

(4.10), we find that

b b= B M(YP sp) =E(., 3, P), (4.11)

I
where we have written

I
I
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E( 11 2) -r(J + 3 + I p)f'
r( +i)r(s +1 -ffp) oI
X s( 2- p + ', +  p, p)fl (p)dp, (24.1 2)

hmB ,sp + 2m+l -- P ( h Y+2s +1 (4o13%n

I Sx2 (Xna)
in=1I n V+1

I Equation (4.11) with s = 0, 1, 2, 3, ... provides a set of algebraic equations

for the determination of the coefficients {ba . Onne the values of the bmS have
mj c tm h

been found, the coefficients Ian ] can be evauated by means of equation (4.8).

The set of equations (4.11) can, under certain circumstances, be solved by an

iterative process as follows:

Since Y is not a negative integer and v - I + 2p we know from equation (3.31)

I that, for all values oi m and s under discussion here we have the relation

2 8( Y' P)

2 Bm ( P, ) = - ms mflL. (4.14)
a 2v + 4s + 2 - p 2 v 4s + 2 - p

I where 8 is the Kronecker delta and L( ' P)denotes the integral

2 )J. KV(t) t
L() I P)= .45 (2y+i ti(t) IJ+2m+-PO: X

)( 21 -dt (4.15)

Substituting from equation (4.14) into euation (4.11), we find that the algebraic

I equations to determine the coefficients Ibm Ibecme

b- b L '(,, P) - -L (2,, +4s 2 - p)E(, , s, p), (a = 0, 1, 2, ... ) (4.16)

m=o

1 The iterative solution of this set of linear equations (which can be shown to

converge if a is large enough - although it is difficult to determine precise limits

for this) is given by

b =- E- r) . (S = 0, 1p 2, )(417)

r=o
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where = ( + 4s +2 p)E( s P) (4.,18a)

and a

=0

The deternu.nation of the coeff.ciens e. of the -pai, of dual seriese
('--i) an A is contained i e8'uat _os (.,.8). ( , ( ) and (4.15); an .

-oracriaL 7robi!n the clhef difficui-y would lie in the comjutatlon of the inte-rais

L. The Reduction of Problem (a.) 'o an inte-ral E ustion,

We consider now the methol of Sneddon and. Sr--stay (19 3) by means of w-ch: , the

soluior of Problem (a) can be reduced to hat of aFredholm integral euation of the

seccnd -::nd,, The cases v = 0, z; > 0 have tio be treated separa t e!y and. separate
consideralt.on i.s required for -D > 0 and-<0

..o (a) oith 0 < > 0:

Suni-.ose tha- for 0 _ < i

a.", J '(.0 xn a () (4.19)

n 1=1 a 4

,for,
then the problem will be solved if we can determine c(p ), by the Fourier-3essel
expansion , hecrem

an = 2 (aU a(u)j,(Un)du. (L,.20)

V + , n.

We now represent the function r(p) in. terms of an auxiliary function g(t) thirough the

and red:.rce th- problem to that of determining g(t). Substituting from equation (4.21)
into equation (4,20), interchanging the order of the integrations and making use of

the forisula ('3,v3) we find that
2 1 - p

a2  "(aTx t (Qk) g(t)dt. (L.22)a 2 j2 (-X"

v +1 I
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Sirait'tn hese values for t'he coefficients a. nrt ton .. .W) aid inte(r-cjhngt_.,,

the order of rntegration and sufmaisrn we getl

222( -,, Ip -- dt~~) )~ 1, 3 ))';-'I'D II- 0'

whe re S tp ~; a) is aef :-nd by e uati- -an 7). Mot A- Us

ofthe Lformu. (3,~32) we find that 1s equatior n' f.- s vrirzen in th.e form

sini ~p7T) U~~gu v

where K is th e integral def!ine d in ~ sng -one foDrmula (y r e obtai-n the

? - *.. + 
A

Malong use of equations (3.5) and (21.0) we see that, this equat:ion reducoes to

f S% (qP-
g t)=

p)i - vm , 1

+ .1P- sPJn p 2U. gU)K v t t a,.; (L,.24)

whach i s a Fredholm integral of the second -kind for the determinati on of th-e ftU-ction0-

Proble-m (a~) -th -1j p < 0, '0

ln th-s case we multiply both sides of equation k4w) by p and integra~te

with res-pec t to p from 0 to p to obtain the relation.

n-= aJ v -11 .(), 0 -- p < (4.25)
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where

= - I I . .

4 Again we assume ttia.t the coefficients Fa can -be represer±ned by mears of the

e uatio.ns (4.20) and (4.21) and hence by erquat o, (i- .22). 2 Substitfting from

equation (4.22) into equation (4.25) and interchanging "e order of summation and

integration we find th'at equation (1.25) is eqai.. len, to -he relation.

22 r( p) t- g(t)S ,p (0 u tp a)_ = (,.).(4.26

Using eauaton (3°33) we find th'a tbzs reduces to

-_ _+1 [g(t); p

Sp+'2 (p) 22 ++ L '-

sz 1, 1); U ) u

With 4he nre.L' of equations (3.5), (3.6) and (3-10) -we can easily show th1it this

I eduocea :o0

g(t) - " T - O f(u)du; t 2

(p K 3(t, u. a.) dn (4.27)lo --PI V - 2p ' 0

whiTc. Ls again a Fredhoim equation of the second kind.

o (a.) wit < 0, 0.

The prrcedure is essentially the same as that outlined above and the finl

results we obtain could be obtained merely by letting Y tend to zero. However a

si-g b modLfication of the calculations is necessary when v = 0 and thie method breaks

down. for 0< p< I.

For -I p < 0 we assume as before that

1- ,(p X = - [ g(t)(t2 - p 2  -dt, _P <

and this leads to the relation

T = ) 2 (a g(t)(t a

I' aJ(a
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which, as the result of an integrat.o'n by parts, can. be vrl ttea in the form

2 C 1 11J'1nt2--PJg(t)dt - X_, -, i', - do.

a - a'J 2 (aX. '' "

Using the fact, haat

10

1 we f-nd tha

9 2 1- - 2 - d. t ( 4. 28)an arak J
a i , -J-Co

This ex-pression for a is ident:_cal with the one we should obtain by putting = 0 in

(4.22). The result of the analy'sLs is the same as ,.hat gLven by letting v -30 0 in

1 equation (.,27) so that we obtarn the inegrai equatdao.

Io h eemnt~n ftefn~o ~)

I Proble (a) ith p =i, i.' = o.

To solve the d.ia-L series equations

I r) aJ n ) (4.30)

11--.

ITID

P-'aJ'lpf~) (0) p r p ~(.1

T we set

00

a) J f p a ti( t)adt (4-32)

ID p 4-t2' -p 2 )!
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I for 0 < p < I. Then making use of the formula for determining the coefficients in a

Fourier-Bessel expansion and using the rule for integration by parts to evaluate the

I relevant integral we find that

a 2 x) h(t)dt + 1. .th(t)dt n (PXn ) 3

The integral involving the Bessel function is readily evaluated and we find that

aM-= 2 2 h(t)oos(X t)dt (4.33)

a a 2 J 2 (aX n ) 0
1 fl

If we now substitute this value of a in equation (4.30) and interchange the order of

summation and integration we obtain the relation

71/ 2h(t)o, o 2 t; a)dt = f ( P ) '  0< "p < I

l which because of (3.32) with v 0, p = i can be written in the form

I L , [h(t); p] = 2 f , ( p ) + L r2- f I th(t)Ko o, -1i " ( p , t; a)dt.

-: Vr- oIof-9-
Applying the operator I7, to both sides of this eauation we obtain the Fredhoim

equation

=11 t) P 2 _P2) +  h()o _T ,_ (t, u; a)dt (.4

77 ,/(t -p 2  0

for the determination of the function h(t) in terms of which a can be calculated byn

T means of equation (4.33) and the function a (P) by equation (4.32).

4.3. The Reduction of Problem (b) to an Intepral Equation.

We now turn our attention to Problem (b). We begin by considering the case

in which the parameter p occurring in the dual series equations

p  a J (P ) o, o P < I, (4.35)
n n1 i n

l

a n J Xn  = f(P), p < a, (4-.36)

I R= I
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I satisfies the inequality 0 < p I We shall assume that P > 0.

When 0 < p < 1, we make the representation

I .

DaflJV(PXl) = - P' g(t)(t 2 
- p2) ' P dt. (4-37)

Using the Fourier-Bessel inversion theorem and performing an integration by parts

I in the integral involved, we find that

Pr 21 (i - -L p) I p 1 oan = 2 2 g(t)t -7 tnd

+1(a.

+ 2 2 2 uf(u)J (uX)du. (4.38)I a= J v+ (a ? )V,,+1 n

If we substitute this expression for a into equation (4.35) and interchange theI
order of the integration and summation, we obtain the relation

72-Pr( 1 -IP) g(t)t S -, S (p, t; a)dt = 0,(p), (4.39)

I where
w e e(P) a- uf (U)S V V ( P, U; a) du

From equations (423)- (4.24) we see that the equation (4.39) is equivalent to

the Fredholm integral equation

g(t) = ( - - , I p [ (P); t

+ - sin(j p I)tf - P u- g(u) _ (t, u)du (4.40)

for the determination of the function g(t).

The case in which the parameter p satisfies the inequality -1 < p < 0 can be

treated in a similar fashion. Multiplying both sides of equation (4.35) by

p V+1 and integrating with respect to p from 0 to p we obtain the equation

I Z k-P-1 a J, (p)) =0, O, p<1. (441)

fl-iI.
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If we substitute the expression (4.38) for the a's on the left hand side of equationr n

(4,)1) we find that

I 2fPr(4 i-) g(t)t V V -i-I , _ 1(p, t; a)dt = p(p), (4.42)1/
where 0 <p <1 and$ 2 (p) is defined by the equation

02( ( - i u(u)S +1,V, -P-( pu; a)du, 0 <p < 1.

Applying the analysis involved in the derivation of the equations (4.26)- (4.27) to

equation (4.42) we find immediately that the solution of the problem is reduced to

1 determining the function g(t) from the FredhoLm integral equation

1 g(t) 2 + t2I - I(); t]= r(i -. p) Zo, -- - pvl (p J

12

I
4in(P g_ p, ,_Ip T Ko V t, u; a) du. (4-43)

I

I
1
I
I
I
I
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5. Dual Relations involving Dini Series.

If the function f(x) is defined in the closed interval [0, 1] , its Dim1

expansion is, in general,

Ib MJ m(X nX) (5.1)
m=1I where [n, is the sequence of positive roots (arranged in ascending order of

magnitude )of the transcendental equation

x J'(x) + H (x) 0, (5.2)

H and v being real constants with Y - . The coefficients b are given by

2m b = f tf(t) J (tk)dt. (5.3)

The expansion (5.1) holds if H +v > 0; if H + P = 0 an initial term

2(v + 1)x' t ' 1 f (t)dt (5-4)

has to be added to the series, while if H + v < 0 the equation (5.2) has two

purely imaginary zeros (+ i 0 , say) and an initial term

/o-0--- tf(t) I (t Xo)dt (5.5)

has to be added. (Watson, 1944; Chapter XVIII).
We now consider the relations

n c J,,(p-X) = f(p), 0 p < a (5.6)
n-i

eo J(P k) =f 2 (P), a c p 1 (5.7)
n=1

Solution in. the case-I - p < O. ' > 0.

We assume that when 0p c<

!
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(P f g(t)(t

From equation (5.3) it follows that

2X 2tlf ()( 12 IPr(i + -2p) x
_Vx2  2 + H 2)j 2(Xk2 V

n I o

x fg(t)t +- 1 (tn)d>t (5.8)

If we now substitute this value of c n in equation (5.6) and interchange the order

of integration and summation, we obtain the relation

22Pr(i +p) t g(t) S (p, t)dt = ,(p), 0 <p <c(5.9)

where the function

, 1(p) = f (p) + tf (t) H (p, t)dt (5.10)

is known.

Now from equations (3.24) and (3.29)

2 14p p - -p-1

S( u ,,, p, p(p$ t) = t t(p2  2 ) - p-YH(p- t)

+; .i,,H v) +'I I (p, t),

where H(x) is Heaviside's unit function, so that equation (5.9) can be written in

the form

r(i + [(P) "- si(PVj) ,H, ,+ jPp,t)g(tt + 2P

which by application of the operator I., _ can be written in the fo'm

I
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g(t) 2 21 ](~~L uf (u)S ,,(t, u)dui - ~ gv~, +I 2)p I

_0-P 2 (t u)d (5.11)
L. ) V a+1p$I+2P 0 " II1

Equation (5.11) is a Fredholm equation of the second kind by means of vhich

we can determine the function g(t) and hence determine the constantslf cI;

Solution in the case 0 < p. < 1. v > 0.

If 0 < p < I and v > 0 the above procedure has to be modified slightly.

Multiplying both sides of equation (5.6) by pv+1 and integrating with respect to p

from 0 to p, we see that equation (5.6) is equivalent to the equation
0o

II , )fP t"* 1 f(t)dt, 0 <p < (5.12)
n nfl V+ P nPj

Substituting the expression (5.8) for c into this equation and interchanging the

order of integration and summation we obtain the relation

22Pr(i + 1) t'+PS v +p . t)g(t Ot<p< c (5.13)

where
()=P' - t,,. If (t) dt. + fctf 2(t). V $Iq+ ~ ~ -

for 0 4 p < c. Since

SH, v.1, v+4-, p -i (P' t)
, + t)

_____________2__P -I-

r (I ) p H(p- t) + sin- 'p-v)K* P)(515)

it follows that we may write equation (5.13) in the form

I FtP~t); P]

r (I + Lp) [ ( )2 V +lY+IP" ' P (P, t)g(t)

I
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I
Applying the operator - to both sides of this equation and makIng use

of the results ( 3.6 ), (3 13.f5) we see that this equation is equivalent to the

equation

________
tI g(t) = I + L)" + ' tP-1 )

I ~ ~ 0- s++ '1 -)+[ + 2
- sin(-p-)t- ut cu g(u)K ",V+ pV +2p, tu(t  )d{

2 0.

i Substituting the expression (5.14) for A 2 (p) we see that this equation is

equivalent to the Fredholm integral equation

g(t) = 2 t- 2 1 fP

1 r (I +fp ,t

+ 2 1 t p f fc uf (u) S, Hs v+ p, I (t, u)du

- sin(p, HV) V+IP (t,u)u - g(u)du (517)

r r (0 + "p)

by means of which the function g(t) can be determined.

Solution in the case O< j2 < 1, P = 0, H > 0.

We now examine the dual series relations

n $ Jo(p x0 ) = f (p), 0 C p < c, (5.18)

I j J0 P (.) = f2 (P), c < p

for 0 < p 1, it being assumed that the [Xn are the positive roots of the

equation (5.2) with H v > 0. We make the representation

0 C (PNn =-I L f g(t)(t2_ -P2)J1dt, O P < c (5.19)p ap I
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from which it follows, by equation (5.3), that

(-A + H 2 n [. tf 2i (tJ t)dt - J @ P fgt)(tPd].

~1 Now

ICt~p t + gt) 2 )t *)Pd0 I0

f g(t) tP dt + X fE tP (t)t

I n d

ft 11 (p t))tt 2 - P?~ p= - ~ri+~ )2  1  t

so that

2 
2

n a

eao n (57 an e f2i f 2(t) Jo(t t dt

t r(i + Ip) x --2 t 7 P J p (t x (5.20)

II

This is exactly the expressionL we should have obtained for cn if we had put

I V = 0 in the right hand side of equation (5.8) but it is arrived at by a different

method; the rest of the analysis follows the same course as that leading to

equation (5-17) and we find finally that g(t) is the solution of the Fre~c-olm

Sintegral equation

t + . .t u)(u ) I 10 ( tu ; t

r(i + p) p1 21 - ,tl - H, ,

. .. 2. p sin(Gp 7) 0 o,,u, g(u)du. (5.21)|r(i + 1p) 0 aHOioprOt
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Solution in the case v + H = 0.

The special case in which v + H = 0 is particularly important. The dual

Dini series then take the form

a V+ 0 cO J 11 (P>') =  (v), 0 p cc (5,22)

n.1

c 0 p +n J, (pxn) = f (p), cp. 1, (5.23)

n-l

where -1 < p < 1 and X , X , .x . are the positive zeros of J (). The

constant a would appear to be indeterminate, but we saw previously (Cf. equations

(2.27), (2.28) above) that in some physical problems its value is known ab initio;

in other problems its value may be derived, at a later stage in the analysis,

from some physical criterion such as that a certain component of stress must

always remain finite.

When 0 < p < I the above analysis can readily be adapted to meet the present

situation and we find that everything goes through easily; in the end we find

that the solution is given by equations (5.8) and (5.17) if v 4 0 and by

equations (5.20) and (5.21) if v = 0 except that in equations (5.17) and (5.21)

the functions K* (u, ) a * (Us v) are replaced
vH, p, y, u v ,H, P, y, &

byKy+l, p, y, 8 (u, v) andS. 1 , , , (u, v) respectively. In other

words when P / 0 the equations have solution

V[ + 2r(v + 2) r( L +u2 Yp~u
a = 2 (v + i)J tv f (t)dt + 2 2P+ +Pg(u)du (5.24)

°c r r(Y + p +1) ,

o = tf(t)J ()t.t + 2iP%- r(i + ctvf ti g(t)j X

n JV(n) n n I

x (tx,)dtj, (5.25)

where g(t) is the solution of the Fredholm equation

g(t) = x (t) - L(t, u)g(u)du, (5.26)

where the free term X (t) is defined by the equation
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x (t) 21 - p) -2 v-I ur -

S2 -2Pt1 - -u -- I  uf 2 (u)S f(tb u)du

r(i + Ip) 0 + ,

22( +2)( +1)rp++ + 5.7

and thae kernlel is given by the equation

2(t, -2 -Pt 1 p sf-nuCSp (t)K, u otu

r~P (1 + Vp + 1 + ,

22 -p (V+ ))r p+y + i)t - -  2 J+Pa

+ -____ (5.28)
r(p + )r(p+ v 1)

In particular if we put v = 0, p = 1, f 2 (P) = 0 we see that the dual series

equations

%+ 7 jo(p x) (p), o V - L, (5.29)

n1

Lo+ U J(px) = , s - 1, (5.30)

where the {[X are the positive zeros of J1 (x), have solution

+ 2 2 21p0 ( + = f g(t)sin(txn)dt (5.31)

where g(t) is the solution of the Fredholmn equation (5.26) with free term

(5.32)

T

L(t, u) = 2nu +j - sinh (t )s= 0h (uy)<Py. (5.33)I n

whr h
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Solution in the case p -1. y = H = O.

It is difficult to derive the solution in the general case when H + v = 0

and -1 4 p < 0; we shall consider only the two cases which are of most interest

physically. The first problem we shall consider is the solution of the dal

equations

0 o + E ?i'c (Pk) = f(p), 0( p a (5.34)
n=1

c + cn oJ(pX) =0, <p 1 (5.35)
l=j

in which the function f(p) is prescribed in (o, c) a is a given constant and

k 2, k ., ... are the positive

We suppose that when 0 < p < c

0 + cJ~p .) -j 0 a c t(t)dt (5.36)E. p a p fp /(t2 _ P)

then

i= 2 g(t)dt, n 2 2 J g(t)cos(tk )dt. (5.37)

Substituting these expressions for the coefficients c into the left-hand side of

equation (5.34) we find that

r c "I(P), )cos(t)
2 a g(t)dt + g(t)dt(2 0 )2= f(P), 0 p < c, (5.38)

However it can be shown that
00 (# GO n )co (t ) n ) P 2 -1t 

)

2 = (p - t) H(p - t) - 2(1 - t)

nal n o'Z n
cosh~ t y (2 1.1(y) -yI 0 (py)3 ~ (5.39)I

-1
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I
so that the equation (5.38) is equivalent to the relation

A/P2 - t2 ) = f g(u) H(u, p) du + f(p), 0 4 p <c (5.40)

where the function H(u, p) is defined by the equation

H(u,) = 2 4/( - u) - 2a +- - coa(uy)[2I( y)oI(py) dy. (5.41)I YiJ (y)

Solving the equation (5.40) for g(t) as though the right-hand side were a known

Ifunction of p we obtain the integral equation
g(t) - g(u)K (u, t)u = x (t), (5.42)

where t =& Lu u du( 
43v t 'A(t'- u)

an~d

v d t f. (t
2 -P 2

)

=-[ V(3 1 ) cosh(uY ) 2I,(y)-ycosh(ty)] dy.

Using the integrals

we find that

K(u,t =( -a)... I I -o~o e '
x (U t)= 0- a J+ K1 (Y) LI (Y-y ohuytcoh y. (5.44)

Solution in the case p = -, y = -H=.

The second problem we shall discuss here is that of solving the dual series

re a i n a c op + ~ c-I a J (P %~ f(p) l 0 -,, p < ,( . 5
nn.

nut
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c c0 p+T ani J(pX) n of c<p P (5.46)
fl=i

where, as before, the constant a and the function f(p) are prescribed, but now

X 1 2.•• are the positive roots of the equation

) 2 = O.

We make the assumption that

cp n a c 1 (t) dt 2, 0<p<c (5.47)
CoP+ Cn cJ,(P n) = p p-V---

o p '(t -

1 from which it follows that

|Ie :o gu o, - 1-:( g(u)sin(x u)du. (5.8)
I n

Substituting these values for the coefficients an in the left-hand side of

equation (5.33) we obtain the relation

I 8up ug(u)d + f g(t)dt 2 J(Ph)Sin(t'n) f(p), 0 -p < c. (5.49)

101 - 2 () ) ] 0

Considering the Dini expansion of the function (of p ) defined by the right hand

side of equation (5.50) below it may be established +hat

2 J(pXn)sin(t ) tH(p - t) t2 )
., xn (x.) p/(P2 _ t2 ) -2) tp / -

I K=) sinh(t)[ (y)_ yJ(PY)] dy" (5.50)

IT a yI2(Y)I

Inserting this expression for the infinite series occurring in the left-hand

1 side of equation (5.37) we see that this latter equation reduces to

S/(2t2)t pf(p) + fog(u) H (us p )du

/(p2 -t)o

where 2 K (Y,)2
H(u,.p) 4 up'4/(i - U2 ) - 8ap 2 u + _s (u) 1 2 (y)-p .(0y) .

I 2(y)
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I /

This in turn leads to the Fredholm integral eauationc
tg(t) - K(u, t)du = X (t) (5.51)

where

p 2 p f(p)dp (5.52)xt) dto /(t 2 
_ p 2 )

I and

K(u, t) 2 : H(up)dpir dt fo (t 2 - P2 )

S16 ut2 )(1 _ u 2 ) - ut2
ITI
14 K2 (y) t ty

+ 2 t2  1 2 (y) - ty sinh (ty) sinh (uy)dy.I 3 1I2 (Y)

Using the fact that

2 K(Y) snh - dy = 0 - 0 '(1 - e )

we find that

1 K(u, t) =-ut(1 - 2cr) - -'- 8ut'I 2 (y)-ty sinhlty)sinh(uy) i- (553)
,IT w2 ,I Y 2 (y) ' '

6. Dual Relations involving Sin Series.

We saw in ?2 (Cf. equations (2.50) and 2.51) that certain mixed boundary

value problems concerning plane harmonic functions lead to the solution of dual

series relations of the type

np an sin nx = f(x), 0 x /c (6.1)

an sin nx = 0, c x kT. (6.2)

I
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In this section we shall consider only the cases p = + 1 since these are the

ones which occur most frequently in applications.

6.1. The case in which p =-1.

If we assume that when 0 < x < c

Z n sin nx = g(x) (6.3)
I f'l=1

then the constants a whose values we wish to determine are the Fourier sine

I coefficients of the function defined by the right-hand sides of equationg (6.2)

and (6.3). Hence we haveIc
a n j g(t) sin(n t) dt. (6.4)

The problem of determining the a n (or the g(t) seems to have been considered

first by Tranter (1959b) who made the integral representation

II g~t) = (I) Sin(, t) (I _ Sin coe 2o)-2

where T. the lower limit in the integral on the right is an abbreviation for

sin- t coseo- c. Substituting this expression for g(t) into equation (6.4) and

then substituting the resulting expression for a into equation (6.1) it isn

possible to find an integral equation for F (s) whose solution enables us to

determine the function g(t) and the set of constants an3. Tranter's analysis

is very complicated and for that reason we shall not repeat it here. It turns

out in the end that

1~ Si2 1~1 Apf2sn(psin -2c)}dp(.6

,,s.sin2 1c da o 4{(s2 - P')(1 -p sin- C

The function F (s) is determined in terms of the known function f(x) by means of

this equation; g(t) is then found from equation (6.5) and the constants an from

(6.4).
Recently Williams (1963) has given a much more direct and simple method of

solving the pair of equations (6.1) and (6.2). Substituting from equation (6.4)

into equation (6.1) we find that the unknown funotion g(t) is the solution of the

I
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I integral equation

g(t) K(t, x)dt = -f(x), 0 < x < a (6.7)

in which the kernel K(t, x) is defined by the equation

K(t, x) = 2 E n n sin(nx) sin(nt)
i n= i

= logj s + t)I  (6.8)
sin (x - t)

By an ingenious method Williams reduces this kernel to a form which at first

sight seems to make the integral equation (6.7) more complicated &ut which, in

fact, enables us to solve it in explicit form. We consider the integral

I min(t. x) tan(i- u )d u

0VI(cos U - Cos t)(cos u - Cos X)]

The result will be symmetrioal in x and t so for convenience we assume that

x > t and consider

I t tan ju du

I V[OOS u - Cos t)OOS u - Cos ]

If, in this integral, we change the variable of integration from u to v where

V = tan! 't- taxIu

we find that

I =8e(z) 80eo(jt) ftan , dv

This integration is elementary and leads to the result

,I j = G( ) SOC = I 8, t) log ta Ix- + tani

I sec(jx) soo( t) K~t, x).

I In other ,orda

i



f~min (t 5 X)tan 
j-u du 

4

Kt, x) = 2 cos' x coat t . (6.9)V(Cosu - Cos t)( c os

I If we now substitute this expression into equation (6.7) and interchange the order

of the integrations in the integral on the right hand side we find that equation

I (6.7) can be written in the form

tan(u c cos) t g(todt u ). f(i), 0. x c. (6.10)

2 OSXJ WCO ou-C08sX)J fuV(COS U- COSt)

I (Cf. Fig. 5 below ). Hence if we write

fu cos( t) g(t)dt
(;G(u) = 2 (6.11)1G. W/(cos u - cos t)

I equation (6.10) becomes

ztan(j-u) G(u)duIo V=O u -Co X rsec(~x) f(x), 0) 4 x < c (6,12)/(cos u - os. x)

I

I 0 c

I Fig. 5

Using equations (3.42a and b) we see that the solution of equation (6.12) is

C.u=ctu d usin( x) f(x)dx

I ~a o0 4/(0o8 x- cos u) (.3
~and using equations (3 .4a and b) we see that the solution of equation (6.11i) is

I g(t) - sc t d ac in u (u)du •u).

I We oan write this reault in another wy. Integrating with respect to t from

!
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i to c we find that

j g(t)dt = - x + -- inu (u)i 

I•x ir x V (Cos x - Cos u) 27r

I see -y ta dy

uy t 10 
(6.15)

The y-integral is easily reduced to the form

.se 2  
1y tan -ydy e 21 u 2 ys- u

fx C I U - cos'-, sec" y) y

= sec( x) sec2 (-u) 4/(cos x - cos u).

I Inserting this expression into the double integral on the right-hand side of

equation (6.15) we find that

fc2 fc tan(-Lu) G(u)

g(t)dt - cos jx) 2 du.

Differentiating both sides of this equation with respect to x we find that

2 d. c tan(-u) G(u)
g(x) = - -u- ,os( .) u, 0 x c c, (6t6)

v dx (cos x - cos u)

where G(u) is defined by equation (6.13).
An alternative solution has been derived by Srivastav (1963) based on t~e

integral representation

if c 0(t)dt (6.17)
dx x 4/(cos x-Cos t)

of the function g(x) introduced in equation (6.3). Substituting this form into

the right-hand side of equation (6.1) and integrating by parts we find that

2n f/ 0_ t) _t

a =-. coo (nx) cos (-x) x
9/ Jo fx 'V(cos x- cos t)

Interchanging the order of the integrations we find that

2n t cos( x) cos(nx)
a - (t)dt dx. (6.18)

n o 0o V(cos x - cos t)I
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From the representations

4(cos t)- ')x dx 4r2 f sinri - -')x

n" t 4/Cos x - c t) 7 ft 4(COS t - Cos X)

of the Legendre polynomial (Whittaker and Watson, 1927, p.315) we immediately

I deduce +at

cosd-r =c nx 4/2- v Cos( x) sin( n x) [n(t) + (P . (6.20)

. 7fj (cos X Cos t) 7 ft V(cos x- cos t) - l-"

an  n-- (t) P (t) +Pn(t dt. (6.21)

Substituting this expression for a into equation (6.1) we find that this

equation is equivalent to

i: 0(t) L(t, x)dt = f(x), 0 < a (6.22)

where the kernel L(t, x) is defined by the equation

TL(Xy t) = -j- 0 n(cos t) + Pn-i (Cos t)] sin(nx).

I Now it follows immdiately from the second of the equations (6.20) that the

series on the right hand side of this equation is the Fourier half-range sine

[ serisL of the function cos(-x) H(x - t)

L(t, x) CO2 0 < x < w.

/ (Cos t - cos x)

Substituting this form for the kernel L(t, x) into equation (6.22) we see that it

is equivalent to the equation

f 0(t)dt sec(jx) f(x), 0 4 x < a.
10 4/(Co8 t - Cos X)

Using equations (3.421 and ) we can invert this equation to obtain the formula

() 2 d ft sin(l~x) f(x) x(.3
0(t) =-- -- Jo(6.23)

z dt f oos X - Cos t)

for the determination of the function 0 (t). If we introduce the funtion G

defined by equation (6.13) we find that

I(t) = tan j t Gt). (6.2.)
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Substituting this expression for 0 (t) into the right hand side of equation (6.17)

we obtain, once againg the equation (6.16) for the function g(x) in the interval

(o, a).
I 6.2. The case in which p = +i.

To solve the equations

I a n asin nx = f(x), 0 < x <o (6.25)
n13

E a = 0, a < x < (6.26)
i ;n=i

we integrate both sides of equation (6.25) with respect to x to obtain the

equivalent relation

SZ (i - cos n = f(u)dl, 0 < x < C. (6.27)
flnmi

I If we now assume that, in the interval 0 < x <c$

S. x /(cos X - Cos t) (6428)
nul

it follows from the theory of Fourier series that

a sin(nx) sin( x)*dx f
n 0 2 f V(cos X - o t)

gtCt cos(n - 1)x - cos(n + -)x= g(t)dt Ix.

9 0 0 N(coa x - cos t)

Making use of the integral representation (6.19) for the Legendre polynomial we

see that this equation can be written in the form

a = -j- f g(t) (cos t) - Pn (cos t) dt. (6.29)
4/2 On - I

If we substitute this expression for the coefficients a into equation (6.27) and

then interchange the order of summation and integration we obtain the integral

I
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equation

g(t) SCc t)dt = f(u)du, 0 < x < c (6.30)

where
CO

S(x, t) = ~.-cos n x) Pn(Cos t) -Pn (Cos
P*/2 n= 1

n (o

By considering the half-range Fourier cosine series of the function

si(-! x) H(x P. t) (.

n/(cos t - Cos x)

we can show that S(x, t) is equal to this function. Substituting the expression

(6.3-1) for S(x, t) into the left-hand side of equation (6.30) we obtain the

integral equation

J: g(t) d t rze X f (u)du (6.32)
e IN/(Cos t - Cos X) - oe~T f)

for the determination of the function g(t). The solution of this equation is

given by equations (3.42a and 1) in the form

2 d t oo (-L x)-
g(t) = - - dx f(u)du (6.33)

I dto /(cos x -Cos t) 0

6.3. Solution of Equations of the Second Type.

The solution of the equations

ZnP an annx= O, 0 X<a (6.34)
11=I

n sin nx= f(x), a< X (635)

can readily be deduced from that of equaticna (6.1) and (6.2). If we ohnge the

I
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independent variable from x to y = i - x and write (- 1 )"l np a = A n

y = f - a we find that these equations are equivalent to

L ,n - p A sin ny= f (y), 0 4 y y (6.36)

I An sin ny= O, Y <Y (637

I nl=

where(Y) f( - Y). (6.38)

If p = I the solution of equations (6.36) and (6.37) is given by equations

(6..2) and (6.23) in the form

Ar, , n Y 0 (t) Pn- 1 (cos t) +Pn (cos t) dt (6.39)v/2

Iwhere
2 ts=( y) f (y)I c(t) :- . dy. (6.4-0)
V dt 1 4/COs. y - Cost)

Reverting to the original variables we find that

I n W1 (t)MPB(cos t) -P, .(cos t1 at (6.41)

A2 f)co(x

ON~t = - - 2 dx (6.42)
v dt t 4,/ (Cost - Cos X)

I is the solution of the pair of dual integral equations

I Z nan sin nx= O 0 4 x < a (6.43)

fl"i

f=1Ta nsin nx = f W), a 4x (6.44~)
fl-i

If p = -1 the solution of equations (6.36) and f6.37) is given by equations

i (6.29) and (6.33) in the form

An = f (t)IPn (Coos t)- Pn(Cos t)]dt
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where*6 2 dpft Cos( Iy)

(t) =-d. f (u)du
v t 4/(os y- cos t) o

Reverting to the original variables we find that

an = , f 0(t) Pn(cos t) + P (Cos t)] dt (6.45)
" ,12 Jc I

wi th
(t) 2 d T sin(G x)dx it sin( t)ffcos(2u f(u)du

-(t)- f ff(u)du - ---- (6.46)v t I" 4/(cos t C os x) .= 0 (cost-cosu)

is the solution of the pair of dual integral equations

n7 I an sinnx0, x<c0 (6.47)
n a

ansin nx = f W c < x <go (6.48)
nu

nfl

6.4. Sine Series Analozous to Dini Series.

Finally we shall consider the solution of the pair of dual integral

jequations
'[ ~~(n - DP ansin~n- f() <X 1 6

I -Z , ,in(n - r) x = fl ( X), o < x < . (6.40)
I n=n

where p ± i, following the method of Srivastav (1963k).

-case (a).: p I , f, (x) E 0. To find the soluti n in thiscase we as that
when 04 x c c

'C g I(t)d tan sin(n - )x = sin x I o 0 < c (6.51)

from which it follows that

2 C c g 1(t) d t
a =- sin(n - )x. sin x dx

7 1. i lc x - 008 t)
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= f g l(t )d t f t C o s (n.-- )x - 0 5( f+ 2)x

if 0 /ocos X - Cos t)

1 Using equation (6.19) we find that

a = V f g(t) -P (CoS dt

(6.52)

a= g(t) (Cos t) -P (os dt n 2
n 11I-2 n COI

If we integrate both sides of equation (6.49) from 0 to x < c we get the relation

I at1 -cos(n - )x] =f (u)du. (6.53)
I0

I, n=1

Substituting the expressions (6.52) for the coefficients a n and interchanging the

Iorder of summation and integration we obtain the relation

- fc g,(t) S(t, x)dt = f (u)du (6.51.)

I where

S(t, x)=[- cos(x , -P I(cost)+ Z fPn.(cost)-P,(cos t)}1-co(n-)x] -

n-2

Now it is easily shown that

4/2-sin xH(x -t) 7 + tIcos(n- 1)x

%'(Cos t - ow X) L + P Cos + o3(1 ) ,,., (cos t)-P ,.1 oo t] 2o( -)

and that

z Z P 2(os t) - P(cos t)] = .P (cos t)

n-2

from which it follow that

S~tS X)=2 osj]+J sin x H(x - tQ

St, -,2((Cos t - Cos x)

IIf we substitute this expression for S(t, x) into equation (6.54) we obtain the

integral equation
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si xI I f (~dg-4r os xg t)d

/l(cos t - Cos X) f o

for the determination of g (t). If we writeC
Y= f 91 (u)du (6.55)

and solve this itegral equation by making use of equation (3.42b) we find that

I d t d x x 4/7y' d Co -Lsx
(t) = f (u)du -. 2 d x. (6.56)

1 -r t4 0 4/(cos x - Cost) IT dtJ, f/(oosx- Cos t)

To obtain the value of the constant y, we integrate both sides of this

equation with respect to t from 0 to c. In this way we get the equation

YI 1 +- oC C - - Cos C f, f,(u)du (6.57)

from which to calculate y,.

Case (b): p = I, f(x) 0.

I In a similar way we obtain the solution in this case by writing

(n- )a sii(n- L)x - sinx ( ) C<x4 , (6.5a)

dx f /ost -cosX)

fl-i

which is equivalent to assuming

Ja, = I g (t) I+ P (Cos t]dt (.9I + [ ] •(659)
a n : f g2(t) [Pn (cos t) - P,. 2(cos t)] at.

IBy a procedure similar to that outlined for case (a) we can show that

I d ;v fj(x) dx

Sg(t) = - . (6.60)r dt J (cos t cos x)

ICase (a): p = -I, f (x) 0.

To derive the solution in this case we begin with the assumption that when

I Z,.,~~cc d "(t t)("
a~o n -i~ co t)-- (6.61)
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wlbirh is the same as assuming that

a f (t) P (Cos t)dt (6.62)
J/2 fo

(r = 1 2, .. ). Substituting this expression for a n into the series o the

left-hand side of equation (6.49) with p = -I and usinr a procedure similar to

that adopted for case (a) we can show that

I d 33-n xf (x)d x
g N = )- ) (6.63)

vt da.f St C os co )

Case (d): p 1 f(X) -= .

To solve the equations

(n sin(n - I)x=O, 0 x < c, (6.64-)

TZa nsin(n -f)x =f(x), c < x 4. (6.65)

n=-

we integrate equation (6.65) with respect to x from x( > c) to v to obtain the

equivalent relation

7 a ] -f(u)f 2 du. (666)
L ~ ) a~ n 2 x 2

We now set

'.('- )x=f g 2 (t), dt
cos t - cos x) c < x < (6.67)

which is equivalent to the assumption

a =----n g2()P- (cos t) d t. (6.68)

InsertLng This expression for the coeffic-ient a in the series on the left hand
7 side of equation (6.66), interchwn g! the order of integration and summation

and makng use of the result

i
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H( t X)

- P (cos t) Cos (n -x (6.69)4/(co* x - ccc t) -

we find that
wg _-(t) - . sin x dx V f,(u)du. (6.70)

?r at t /(cos t -cos x) x

After a little manipulation it can be shown that

2 sin t IT f (u) dug (t) - ___ (6.71)
, It 4/(cos t - cos )

7. Dual Relations involving Cosine Series.

In this section we shall consider dual series relations of the type

Xao + L n- a. Cos nxx f (W, 0 ! x < C

n=i

Ta + L acos nx= f 2 (x) c < X
a n = "

and other dual equations involving cosine series. We saw in §2o3 (see equations

(2.45) and (2.46) above) that equations of this tye with the value of X

prescribed arise in the arialysis of certain physical problems. In what follows

we shall always assume that the value of the constant W is among the physical

data of the problem. We shall follow the treatment given in Srivastav (1 963b).

7.1. The case in hich p = +1.

We begin by corsidering the pair of equations

do

,Xa + Zn a oos(nx) = fO(x) 0<x< c (7.1)

1 a + a no8(nx)=0, a<x< . (7.2)

Integrati- the first of these two equations with respect to x from 0 to x we

obtain the relation

'Xaox + a sin(nx) =P(x), 0< x < c

An itI
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and K( t. u) denotes the kernel

Kt, U) = u ii- I (ty) I (uy)ay- u. (7,9)

, r, sa.n.h ivy) 0'

An alternative solution leading to an integral equation whose solution can.

be reduced to simple quadratures has also been derived by Sri-astav, We put

a + a cos nx= cos(I) 0 1 x < c
- [4Y(03x-c:- _'-- o N(cosX -C ost) (40

from which it followm that

I[ ar 1(~d. a
a,7- oi F 2:- k€t d. t a.: OW (Co +.(o

jo W- i n r ..

Substituting these expressions in equation (7 .3) we obtain the relation

Jc , Jo ,b-- ; (tt + n.. €t (cost k P ( Cos tsin n) clt=F(x), 0<x< c

2A '2 J o )V2 4 o

from which, as in the deriration of equation (6.22) we deduce that

... . 0. (t)d t + oo k.,( =t _F ( , 0O <-x ,e
24/2 i o Jo 4/(Cos t -. cos X)

Inverting this equation by means of equationa (3,,42 a and b) we find that

2 d.r sinG x) IP(x) dx I d rx sinQF X) d x¢(t) _ - I - - - Xa - --

. t 0  A4(Cosx-Cost) 7 dtJ 4/(cos x. cos.t)

To determin.e a. we, integrate both sides of t.his equation with respect to t from

0 to c to obtain the equation

a. (7.12)
I +

where 4/2 c si( X) F(x) dx c x sin( x) dx

0 =-- 00 .. - cS c) 2 IT A/2 Jo 4/(oos x - Cost)

Hence we have

Ii
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2 d sin(-! x) F(x) dx xi d x sin(4- x) dxI(t) - . 2_1_....I - (711)
dtJ. %/(cos x - cos t) 7i0 + x ) dtJo V(cosx- cost)I

,2, The case in which p -1,,

We now consider the solution of the pair of dual series relations

I. + a+ n' a cos(nx)=f(x), Ojxn (715)

I
a. + L an cos(nx) = O. c < x 4Vr. (7.16)

If we integrate the second of these series term by term we find that

a (v - x) n 'a sin nx= 0, c < x v i. (717)

We now assume that when c < x <
CO

VX a + n" a cos(nx) = sin( x) g(t)dt (7,18)
0 n1C 4/(cos t - cos x)

n-l

which is equivalent to assuming that

a. =.a2[/I f (u)du + - -  g(t)dt] (7.19)

a=n n _ g(t[P (Cos t) - P, (cos t dt (,0

where
A12 Ic I

2b =- f(u)cos(nu) du. 
(7.21)

If we substitute these values into equation (7.,17) and interchange the order

of integration and summation we find that

fg(t)S(x, t)dt = a ( - x) - bn sin(nx), c < x v

C, nat

flg
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where a

S(xw t) r/ (ccs t) - P (cos sin(nx)

8(x. 1 t) ,/L L n. n
nliI

sin(! x) H(t - x)

I :A/(cos x - cos t)

I so that g(t) is the solution of the integral equation

I sin g(t)at x)b sin nx - (, i a( I - x) (722)on( x) i g(CoS x oo-os t) n:,

I. with solution

I d d T ir (- x) cosQ-x)d x
g(t) - - -( t) + P (cos t - - fg)4/2 dt L ' n fp o dt it 4/(o t- Cos X)

Ii~
Now

b nbfP n(cosl t) + Pn- (co.3 c) 2 f (u) a (u,, t) du

n.

where

a(u; t) P {(Cos t) + p (Cos t)} cos(nu), (0 u a c t v i)7 n n i '

4/7 cos(- u) H(t - u)

"- 4/(cos u - Cos t)

and hence

00~~~~ 2#/72 c f (u) cs- )d
7bn {p (Cos t) + Pn (Cos t) -- / COS- - f(u) du

showing that

b P(Cos t)+P (Cosat)> ) .. .

. n nan v t *( os u - Cos t)

I



I The solution of the integral equation (7,.22) can therefore be written in the form

[ =L~ [ _________ gt) (u) cos(Lu) du a d 1 ( 7r - x) cos(Lx) dx(73o~t, = - ... -'-.- (1.25
7r dt Jo 4/(cos u -cos t) ffdt Jt A',/(cbs t cre.x)

The value of ao can be found by a simple integration.

7;,3. Equations of the Second Type,,

If we make the substitutions

1 0 .; x Ir - y, ) a = A 0 =An(-1)'a nAf(i-y=f(Y)o on n1

I in the equations

a + n a oos(nx) 0, 0 x < c (7-21)

f=j
aT 0'a + T a n cos~nx) =f(x);; 0 < x V (7.25)

n=.l

we find that they take the form

AA ° a+ n'A ncos(ny) = f,(y) 0 < y< y

n-i

+ A cos(ny) = 0, y < y

n=1

which have been considered in 17.2 above. From equations (7-19), (7,20) and

(7,23) we can write down the solution of these equations and reverting to the

original variables we find that the solution of equations (7.24) and (7.25) can

be written in the form

Xa ° = { f gt)dt +f f(x)dx

Sfox) cos(nxx)dx + x (7.26)

.x IP(Cos t) +P n(Cos t)g(t)d t

I



I where g(t) is given by the equation

2 d Vr f M) sin(~- u) du Xa0 a x sin(I x) ax27I g(t) = - -.. (7,27)
r dt Jc ,/(cos t - cos u) ir diJo4/(cos x - Cost)

I In a similar way we can reduce the solution of the pair of dual series

equations 7(
'%+a + o x=0 78

'cos nx= O'(x), c < x (7..29)

can be reduced to the type considered in 07,1 above- In this way we find that

the solution of this pair of equations can be written in the form

= f

a -= g(t) dt (7,30)
o Jc

a n . g(t) [ (cos t) -P (cos t ldt (7 3)

2ca , .u cos( x) a a fdr(- X)cos( X)
g(t) _--] f(u) du - a- ax. (7.32

S. t Jt Kco- t - x) at Jt*/(cost- cos X)

.  Cosine Series analogous to Fourier-Bessel Series,

I We now consider dual series equations of the t-jpe

n- VP a cos(n- ) x= f (x), 0 xc (7,33)

I m,
? an cos(n - j)X = f 2 (x) a < x "C w (7.34)

I sn-i

I
!
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If we make the substitutions x = w - y, c = a f (y )

S2 IT
,  - y ) = F2 (y) a n )n (n ,- P A we f ind that these equations

, assume the forms

(n ±)PA s(n n (), 0 < y < y (7°55)

I
T n inn D =,() < TOA

and these equations- have already been considered in 16 4-,

I In this way we can show that the equations

00

(n -) a cos(n - -Ox = f(x),. 0 - x < c (7.37)
fl-iI

/.a cos(n -)x = 0 o < x 4 IT (7.38)

have the solution

a = #72/ g(t) P (cos t)dt (7.39)'

where
sntf(u)a (7.0

Sg1t , '(cos u - cos t)

I This solution also has the property that when 0 < x < c

a ncos(n - )x = . ..C s t (7t)d).:, ' (cos x - Cos t)

I The equations (n a co(n - = o, 0 x <c (742)

nZ a, coa(n - j-)x= O,,) cc x <c(,
n

I -i
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have the solution
a M = 4rf g(t) P (cos t) dt (744)

where

g('t.) = I d t Lfx) sin x dx
Ii g(,t,)_ ( "._~ x . 7,45)

vr dt Jt '(cos t -cos x)

Also for this solution...

- a -f a f -- ) Xd- t (74 )

Lx a (cos t - cos x)

t Similarly the eq ations

7 \ a cos(n - x =f(x). 0 4 x < c (7.47)
n

Z7 (n -9)a cos(n-)x = O, c < x 4 (7,.48)

n-,

have the solutionfc°r , ,
g(t) I - cos tjdt. a = -- g(t)jP (Cos t) - (Costa p/,2 o n 4,/2 0

(n ;t I ) (7.49)

where
where (t) _ - f(x) dx (7.50)) dt 4/(COS x - Cos t) (

and where for 0 4 x < c

(n - -) a cos(n - x = - sin x - (75I)
2 n ax (Cos x - cos t)

Firmlly we note that the solution of the equations

Sa oos(n-')x= O= x0 0 (752)

n-i

I
! .
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n=?n ) a Cos(n ~x f(x) c <X ir (7.53)
n=l

I can be written in the form

a = L. (I + Cos u)g(u)du, a. g(uf (cos u) - P- 2 (cos u du,

I (n , 2) (7.51+)

i where

A/y d 7-r du I d ir du -It
g(t) = - ,d- , c f(x)dx (7,55)I t at 4/(COs t 00 cou) - v- T t //(Cost- CosU) u

with

I2= g(u) du,

so that

A4-du ______du _Y2 -C.=- d f(x) dx.-- 4(c os U - IC' 4(c c os u)

I For this solution

cs(n -) sin x gLu) du < X(745w)Ta n 10 41(cos u-cos X) (7-56)

8 Dual Series Relations involving Series of Associated Legendre Functions,

- The study of dual series relations in which the series involved are

expansions in terms of associated Legendre functions have been studied by Collins

(1961),- whose treatment we shall follow here.,

We begin by considering the problem of the determination of the constants

a.] such that

a T' (cose) f(o). o ( 0) (8)
T mn fl

I
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,(2 + 2m + 1 )a T- m (o e) = g(e) a <a <V (8-2)

I -
where the functions f(e) g(O) are prescribed and we assume that sinmo f(e)

and sin- m eg(0)are continuous in the closed intervals C' al-[a -- I]

respectively In §3.4 we saw how dual series equations of this type can arise

in the analysis of problems in mathematical physics.

We make the assumption thatI
C' (2n + 2m + 1)an Tm h(e), (0 6 4 g)(

Tn m~n

I then using equations (3.48) and (3 49) we find that

gmx)Tm (c sl.rln (A

a (.-1 )m a h(x)T m(Cos x)sin x d -x + mIJ(x)T,(Cos ) s dx,; (8- -)

(n O I 2, .. ). Substituting this expression. for a into the. series on the.

left hand side of equation (8 1) and interchanging the order of s ,mmation an

integration., we find that h(0) satisfies the integral equation

(- h(x)S,( . x)sin x dx = f(8) - l(-a) x)s:n dx. 0 < e < c (8.,5)

where the kernel SM( 0Y x) is defined by the equation

m(0 " X) T M(coo ) T .m~ os ) .(8-6)-~~ Tm ( 0 ' x m~n M..

n-o

Now, by the addition theorem for Legendre polynomials (MacRobert, 1947,

p 328), we have

L- rPa(cos a) =Pr(coa e )Pr(coa + 2 ..=,(-1), co.(m¢)Trmos e)Trn(oos x), (8,7)

Mal

where r is a positive integer and

cos 8 = Cos Ocos x + sin0 sin x cosf,'1
I
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P-om, this it follows. that

I ( ()mTM (co o) Tm(cos x), r m

I r ( C 9 ) c m 0 d0 f , r

I and hence7 from equation (8 6), that

~J 2v 27

I Z"n" e)-=2'v 2 Jo

13n=o

we find on interchanging the order of integration and summation that

(-I. x ) Mt 2wcs(m A d* _ ,2 1 r cos(m0) do
21 , o 4/(2 - 2 cos 8) 2. 1 o ( + ,S 2  - 2 s-, cos)

2 12

0 and x since both lie in the open interval (0, , )., The integral occurriiig

in the equation on the extreme right can be put in another form by using a lemm

due to Copson (1947) 5 we find that

1/j( 2 A/( 1(2)

If we substitute the form (8 8) for s(0, x) into equation (8,.6) and notice that

when 0 ( x. s <. a and when 0>x, > s2 we find that h(0) satisfies the

"lequation 
s2

si 'mi h(x) sin! d [x 2- (IS h(x)sin''x dx )Y

10 10 a 2 a2)(32 S2

E 2m

S s da

I fo ,was ,v; -S'U

I
!
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- 2

f (i0) - AI"7 " g(x)sin m x dx s (0 <.¢ . 0 < a ). (8,,9)

We now change the variable in the inner integral from s to u where

I s=2 cos ecos - x tan - u

and invert the orders of integration in the integrals in equation (8,9) to obtain

I, the integral equation

jOH(u) (tan-u)m du (tanOG)" f(a) -. (tan - <.oSo0...... ... ! rOG,., f: )0 (. NO <,a)),,.10

I' A (Cos u - 0 8o ,v'(cos U-Coose

Swhere the functions H(u) and G(u, a) are defined. by the equations

I a( = h(x) (cot - x)s sin x dx
H(u)(oo 

u - oo

I V g(x) (cot -L) sin xdx
(u,a) =- . .c .-. .. (u < a). (8.12)2 v l a%/(COS u - Cos X)

From equations (3.,42a and b) we see that the solution of the integral
equation (8,10) is

(cot -1U d u. sin O(tan ' eYm f(B)de
H(u) = -- -- (u, a ).(0< U< a) (813)

da ,f o #V'(cos 0 - cos u)

and from equations (3r-43,a and h) that the formla giving h(x) in terms of the

function 11(u) so determined is

I h(x) =-2(tan- xf) cosec x di a H(u) sin u du (0 x <a )a (8.142)2 dx fx 4/(cos x - Cos U)

The corresponding value of a nis obtained by inserting this form for h(x)
into equation (8,4), However, it is possible to determine a in terms of H(u),

Collins has shown that

an=(21r) 2 rn 2 m +) I 1(u) (sin uft cos(. G u1 M)n (cos u) du

1f ~+0() (sin u)' cos(L u) ' mn (Cos u)du} (815)

I °



7a

where I m n denote-i the polynomia.. def ine9d "y the equation

I 11m (Q) m ' (,nn +22m + 1; m + -(i -i) ) (86)

r,n+1)r(m+) "

and G(u) = a ( ". U (8.17)

I 1 X(II- u a ( ,,u < 7,)

The cases m = 0.: I are of most interest frcm the point of -iew of spp.ica.ior,

Putting m = 0 in these formulae we see that the e-cuations.

L + )a .P (co. 0e) g(e. a< 0 (

have golution o[

k/2 .(u) Cos n7+ ) F ,.. Gc.. (,

where

)~. = ru . '~e , , a,)_ (u.. '. (
v du. o 4/(cos e- co.su) 2i a4/(cos u - cos x)

I Also tbe au.lj]iary function h(x) is given by the equation

h(x) 2 cosec x -d a si.n 1. Hu) du 0ex <,1 (8,22)
fd x A(cos x -cos u)

I As a special case of these. results we have. tha.t the colution of the equations

| " P (Co s)=j . o%.<O < (,8..,.)-
.j n n%

(2n + 1) aP ,(cos) = O Ca< - Ir

I

I
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SSin.n I sin(n + 1)a (8,25)

n _n n+ I

The corresponding expression for H(u) is _C cos-L u so that when 0 < e <

we have from equation (8,22) that

cc2,V2 dc s:i ua cosC-2L U) du
)(2n + 1)a P (cos a = - cosec 6- 1

T dee 4/(cose -cos u)
n-o

The integrations are elementary and vie find that

V~ ~ ~ (CO -2( aO CO [Io aa o
= -+ - )a" co (OeJ (cos -7 cos) o 7 <).(. )

Similarly if we put m = I in the general formulae we find that the pair of

equations

a T-' (cose) = f(e). 0 c < a (8.27)

n=o

(n + 3) a T (cos 0) = g(a) a< 6 < i, (8,28)(2n+ ) n  n .

I', fso

possesses the solution

a -= H(u) tan(! u) se.(- u) [(n + I) sin(n + 2)u + (n + 2)sin(n+ I) duIn 0- 20 .

+ G(u) tan(' u) see(' u) n + i) sin(n + 2)u + (n 2)sinn + I)u]du (8,29)

Iwhere
2cot u d u s 2( e) f~e) a

H(u) _ IT du 10 /(cos -,COS - G(u,, ) (8.30)

I f g(e) COS 2( E' 0 83t d
• ~ ~~ /(COS a)= J c - COS u )

I G Go(u) is defined by equations (8 17)

I
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We now consider the equations

Z (I + H) a Tm (Cos a) = f(0) (< < a (8-32). nl M, n'

nmeo

(2n + 2m + I) a T m(Cos 0) = g(e). ( < 0 I )< (8,33)
were n +' for mvn

fl'= C

where Hr is a given function of n which is 0(n
1 ) for large values of n. As

before we assume that sin-me f(e) is continuous in (O. a ) and that si Im e g(O)

is continuous in (a , - ), If we make the assumption (8,3) then the coefficients

a n are again given by equation (8j4); if we insert the value (8,)) for a into

the sexies on the left hand side of equation (832) ,,re obtain the equationcc
.(-)m T -_ (cos +)(I + H ) h(x) Tm cos x) sin x dx

nl~o

= f(e) -(-i)g ( +H) T -m (oo)] (x)T' (oosx)sinxdx.,(o<O<a (8°34)

n-c

As in the derivation of equation (8.10) we find that

1(-1)m Z (Cos Of g(x)T m, (cosx)sin x dx = cotJ6 f ;su -a s2  d (0.,35)
)m T, a *0 4/('cosu - Cs e

m0n (cs-Mnd 0 H(u) txm 'u du

T' r (Cos jh(x)Tm (cs=in d -otm- &]O co 0) (836)

where H(u) and G(u, a ) are defined by equations (8.,11) and (8o12) respectively.

If we write

1 0 H()m T (co o ) a h(x) Tm Coos x)sinx d x
nm nJ m +n I M+ n

n-o

then, using equations (3 , 17) and (3,50), we find that

+2m+1) OR mn (u)du a
Hn? + a h(x)sinx cotmix dx xY -J r (n + I) -o'c os- 1osm)2

,no o /Coos, v - cos 0)

I



I 75

It can be shown that

...o 4/(cos u - Cos) I tan m  v K1 (u, v)H(v)dv (8.37)

Iwhere

I v) = rotm1 u cotm n ) Rm.n(V). (8.38)

I 
Similarly 

if we write 
n=o

J(-I_ )m H T'M (Cos e )f g(x) TM (cos x)sin x dx (.-,39)

n=c.

it can be shcwn that if

G 0(v) = (8,.4)
I(v, v), a< v <v

then 10 tan u
2- ~udu M1TJ=cot° .ji,' 8co ' P t an -fv K (U $ v) ( v-) d v,.

o V(cos u - cose)o t

If we substitute from equations (8,35), (8,36), (8.37), (8,41) into

equation (8,34) we find after some mar#ipulation that the function

IJ(u) =tanm -1uH(u) + G(u , a)1 (842

satisfies the Fredholm integral equation of the second kind

a: ootm 1u d ufo Wx tan mixsinxdx
J(u) + f (u, v) J(v)d v -

'o uf 4/(co, x - Cos U)

far a v K (U: V) G(v,. v)dv, (0 < u <a) (~3

I Ia

with symmetric kernel K (u.3 v) defined by equation (8.38)o Once we have found

the solution of this equation we can determine H(u) from equation (842) and the

I function h(x) from equation (8.14),

I
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The case m = 0 is of special interest.. We then have

I J(u) =- H(u) + G(u,. ) (8,,4)

where J(u) is an even function of u satisfying the integral equation

J(U)+'fK(u-v) J(v)u d+ v u fx) s'in x dx
I T. d. J o 4/(Co x - cos u)I

-2 H cos(n + )u G(v., v)cos(n + )v dv,,.u < a (8,45)In
where

I o(x) = H cos(n + -) x, (3.46)

n=o

9- Dual Equations involving Series of Jacobi Polynomials

I Recently Noble ( 963) and Srivastav (19632) have considered dual series

relations involving Jacobi polynomials, In this section we shall follow the

method of solution due to Srivastav,

We consider the equations

r(a + n + A ( Cos 0 f( ) ; 0 0 < (9 1)

r(a +n+i) o "=n
In-o

r r(p + n+3) ,p
.... . 2. A P (Co ) = g(a) ; e " 7 (9.2)

+( +n +1) "

where a > - j, fi> -i and P is the Jacobi polynomial defined by the equation

P~~ n0I' '8 )  (n=( ) I( ..n  + a + P + al + I j , x ) 'I
1~~~f (I (na t  ~ ~ -X) (9<3)
o; alternatively, by the equation

p( a (X) . (-1)n ' P n, ,1 T (9.4)

I
I
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We shall also require the fact that if a > -1,~6 > -1

~where
P(a -: 2 + + I ( + n + I r +n+ 1((9.+n6)

n =n7 r(a +g+2n+i) r a + +n+1 

We observe that if the solution of the -pair of dual equations (9.1) and (9.2)

is known we can derive the solution of the pair

Sr(a+n+ ) ( ose) = f(e): 0 4 0 < (97), t A (cos9v7
r( + n +i)

O r(p+n+ A P(a2) (cos 0) = g(O), < e . (9,8)7, r (p +n +) n n

j by a simple change of variables, For that reason we shall consider only the pair

(9,1) and (9.2),,

If in equations (8A) and (8,.2) we make the substitutions

T-m (cos 0 r,(n + 1)si .. p(, M) (cos )
m+n 2mr(n + m + n

a = r( + A,. f(G) 2
"m si-nm 0 (O)

r r(n + 1)

g(0) 2 sin m G(O)

we find that these equations can be written in the form

I (m +n +)A P(m~m) (cos e) F(O): 0< o <

r(m+n+ ) (I A P m (cosB) G(O), a <0 <wr
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so that the equations (8.1) and (8.2) are special cases of the equations (9.1) and

j (9.2) with , = p = m,,

We begin by considering the integral

I u sin x P ( (os x) (sin - X) 2 a

I(u) = jn dx2 0.u,<i (9.9)
1 10 /(Cos x - os u)

If we replace the Jacobi polynomial by the hypergeometric function given by equat-

I ion (9,3) and interchange the order of summation and integration we find that

) r~ r(,,+ nr + 1) C1 _ cos u)P .I - 1 (cos u). (9o)

I(u)  2- .2 r(a + n+ 3 -no2u0

Similarly we can show that the integral

Iv sin x P ' (cos x) (cos I x)2 Pdx

2 v n (cos v - cos X)

has the value

I (v) = 2' (I + cosv)+2 r(8 + n +1) ,18+1 (coS v). (9,12)
r(p+n+3) n

From equations (9,10) and (9,12) it follows immediately as a result of simple

I differentiations that

I I (u) = 2-  r( i + n) - c u)a sinu p 2P +- 2 (cosu), (9,13)

du r(a +'+n)

I and that

d 1(v)= 2- P r( +i + nl ( + cos vr -  sinvPa+l (#4

dv r(p+- +n) n

I Using the orthogonality condition (9°5) we can easily show that if

do . (a , p1)
cof(cosV) cL (Cosv), o v (9.15)

n=O

1 then the coefficients c are given by the equation

I
I



79

.'.( a + a + 2n + i)r (a + 8 + n +1) (s V)2 a +1 (oC V? +1 f(Cos v) x

r(,+ ++n+ n+) Or (+n+0
(a

X V)d V (9.16)

We are now in a position to solve the pair of equations (9,J), (9.2). If

we multiply both sides of (9.1) by sine (sin L0)2a(Cos e - cos u) -  and

integrate with respect to 0 from 0 to us then differentiate with respect to u,

we find on using equation (9 ,13) that

( s A o u) 1 F(u) 0 a- u ' (917)2 2 (oSU FU.(1 -Cos.U), - - in u  A P- U
t~ 1--n

where F(u) is defined in terms of f(O) by the equation

uine (sin - e (co - cos u) - f(e)dO, (918)

I Similarly if we multiply both sides of equation (9,2) by sine(cos 20)
2

(cos u - cos e) -
2 and integrate from u to iT we find that

2~r2 + Cosu)P+271 A P@~P- )(csu) GQ(U), (9.1 9)I __ nn

where G(u) is defined in terms of g(e) by the equation

G(u) = c 0(Cos 1O )2p (cos u - Cos9 )-fg(e)de, 0 <u < (9,20)

I If we now make use of the formula (9,16) we find that

A (2V )-2 n,, ( a+ 0+ 2n +l) r ( a+ + n +) xAn= r( a+ n + 1) r(P + n + !)

rL)2+ a-n+Lr, p 2a~

I x(cs ')2P+ - + (cos 0)j sin e(sin1e)2 (coso - cos )-f(e)dO

j + (n +P + J sin0(sin(e)2af(C)O (cose- Vosv)- (cos 1v) sin I v x

,a +1I~ovdI 1 -  v)dv

I
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0 ,, e(osi e) 2 Pg(8)de (cos V - Cos )-(coslv)(sin-v)2

a -I P8 +L
P 2 + 2 (cos v) dv- (9,21)

If the forms of the functions f and g are complicated the determination of

the coefficients A by means of equation (9,21) is obviously a very difficult

procedure, but in many physical problems it is sufficient to know the behaviour

of the functiens

f (e) = A P (cos), < e -< 7 (9,22)

no r( +n+ i) I1

0 r(p n +(
g,(9) = A a (cos9), O <a< (9.23).--T r(p + n+) n n

n=o

We can write equation (9.17) in the form

A AP@ P+ )(Cos u) 2 (i osecuF(u),Tj nn

n=c.

If we multiply both sides of this equation by (sin u)(sin 2 u)2 a - i x1

(cos u - cos x)- 2 < x 4 iT and integrate we obtain the relation

22"1rI (I 8 ( = f F(u) du

Jo 4/(cos u - Cos e)

+(i)[ sin u(sin U) 2 a a-I (COs j-u)2 -I G(u) du
2 W(cos0 - Cos u)

i,.e , when $ < 0 vi

f (e) 2 (1 - Cos e)a F(cu) du

0ACos U - C08 0)

2 a-I- C-oe [ 0  u u)in a I (cosLu)2pI , _G
+ 2 ~ - 1- 0 -Cos o)- f sin u(sin~u-L(o~)2' (!a (9.24)

J 4(co. -a.cu)
where F(u) and G(u) are defined by equations (9o18) and (9.20) respectively.

I Similarly for 0 < 0 < we have

f(e) -2P ir 1 + coos0) -Pcosecam d (O' u)2snsi _U- F(u)du2 
( h f 4!csa-CsU
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I -2 7r 1(1 + cos. cosec,. s~~()d (9.25)
da 61 ,/(cose0 - cos u)
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